This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337106 #10 Aug 24 2020 23:15:51 %S A337106 0,0,0,2,6,14,28,58,94,158,268,538,790,1582,2590,4030,5374,10750, %T A337106 14686,29374,41038,60798,95998,191998,242878,340030,532222,677374, %U A337106 917278,1834558,2332798,4665598,5529598,7864318,12165118,16422910,19595518,39191038,60466174 %N A337106 Number of nontrivial divisors of n!. %C A337106 A divisor of n is trivial if it is 1 or n. %F A337106 a(n) = A000005(n!) - 2 for n > 1. %F A337106 a(n) = A070824(n!). %e A337106 The a(3) = 2 through a(5) =14 nontrivial divisions: %e A337106 6/2 24/2 120/2 %e A337106 6/3 24/3 120/3 %e A337106 24/4 120/4 %e A337106 24/6 120/5 %e A337106 24/8 120/6 %e A337106 24/12 120/8 %e A337106 120/10 %e A337106 120/12 %e A337106 120/15 %e A337106 120/20 %e A337106 120/24 %e A337106 120/30 %e A337106 120/40 %e A337106 120/60 %t A337106 Table[Length[DeleteCases[Divisors[n!],1|n!]],{n,10}] %o A337106 (Python) %o A337106 from sympy import factorial, divisor_count %o A337106 def A337106(n): %o A337106 return 0 if n <= 1 else divisor_count(factorial(n))-2 # _Chai Wah Wu_, Aug 24 2020 %Y A337106 A070824 counts nontrivial divisors. %Y A337106 A153823 counts proper divisors of n!. %Y A337106 A337107 has this sequence as column k = 3. %Y A337106 A000005 counts divisors. %Y A337106 A000142 lists factorial numbers. %Y A337106 A001055 counts factorizations. %Y A337106 A027423 counts divisors of factorial numbers. %Y A337106 A067824 counts chains of divisors starting with n. %Y A337106 A074206 counts chains of divisors from n to 1. %Y A337106 A076716 counts factorizations of factorial numbers. %Y A337106 A253249 counts chains of divisors. %Y A337106 A337071 counts chains of divisors starting with n!. %Y A337106 A337105 counts chains of divisors from n! to 1. %Y A337106 Cf. A022559, A124010, A251683, A325617, A336941. %K A337106 nonn %O A337106 0,4 %A A337106 _Gus Wiseman_, Aug 23 2020 %E A337106 a(0) from _Chai Wah Wu_, Aug 24 2020