cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337107 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors from n! to 1.

This page as a plain text file.
%I A337107 #11 Aug 24 2020 01:02:49
%S A337107 1,0,1,0,1,2,0,1,6,9,4,0,1,14,45,52,20,0,1,28,183,496,655,420,105,0,1,
%T A337107 58,633,2716,5755,6450,3675,840,0,1,94,1659,11996,46235,106806,155869,
%U A337107 145384,84276,27720,3960
%N A337107 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors from n! to 1.
%C A337107 Row n > 1 appears to be row n! of A334996.
%e A337107 Triangle begins:
%e A337107     1
%e A337107     0    1
%e A337107     0    1    2
%e A337107     0    1    6    9    4
%e A337107     0    1   14   45   52   20
%e A337107     0    1   28  183  496  655  420  105
%e A337107     0    1   58  633 2716 5755 6450 3675  840
%e A337107 Row n = 4 counts the following chains:
%e A337107   24/1  24/2/1   24/4/2/1   24/8/4/2/1
%e A337107         24/3/1   24/6/2/1   24/12/4/2/1
%e A337107         24/4/1   24/6/3/1   24/12/6/2/1
%e A337107         24/6/1   24/8/2/1   24/12/6/3/1
%e A337107         24/8/1   24/8/4/1
%e A337107         24/12/1  24/12/2/1
%e A337107                  24/12/3/1
%e A337107                  24/12/4/1
%e A337107                  24/12/6/1
%p A337107 b:= proc(n) option remember; expand(x*(`if`(n=1, 1, 0) +
%p A337107       add(b(d), d=numtheory[divisors](n) minus {n})))
%p A337107     end:
%p A337107 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n!)):
%p A337107 seq(T(n), n=1..10);  # _Alois P. Heinz_, Aug 23 2020
%t A337107 nv=5;
%t A337107 chnsc[n_]:=Select[Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],n]}],{n}],MemberQ[#,1]&];
%t A337107 Table[Length[Select[chnsc[n!],Length[#]==k&]],{n,nv},{k,1+PrimeOmega[n!]}]
%Y A337107 A097805 is the restriction to powers of 2.
%Y A337107 A325617 is the maximal case.
%Y A337107 A337105 gives row sums.
%Y A337107 A337106 is column k = 3.
%Y A337107 A000005 counts divisors.
%Y A337107 A000142 lists factorial numbers.
%Y A337107 A001055 counts factorizations.
%Y A337107 A074206 counts chains of divisors from n to 1.
%Y A337107 A027423 counts divisors of factorial numbers.
%Y A337107 A067824 counts chains of divisors starting with n.
%Y A337107 A076716 counts factorizations of factorial numbers.
%Y A337107 A253249 counts chains of divisors.
%Y A337107 A337071 counts chains starting with n!.
%Y A337107 Cf. A022559, A124010, A167865, A251683, A337070, A337074.
%K A337107 nonn,tabf
%O A337107 1,6
%A A337107 _Gus Wiseman_, Aug 23 2020