This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337107 #11 Aug 24 2020 01:02:49 %S A337107 1,0,1,0,1,2,0,1,6,9,4,0,1,14,45,52,20,0,1,28,183,496,655,420,105,0,1, %T A337107 58,633,2716,5755,6450,3675,840,0,1,94,1659,11996,46235,106806,155869, %U A337107 145384,84276,27720,3960 %N A337107 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors from n! to 1. %C A337107 Row n > 1 appears to be row n! of A334996. %e A337107 Triangle begins: %e A337107 1 %e A337107 0 1 %e A337107 0 1 2 %e A337107 0 1 6 9 4 %e A337107 0 1 14 45 52 20 %e A337107 0 1 28 183 496 655 420 105 %e A337107 0 1 58 633 2716 5755 6450 3675 840 %e A337107 Row n = 4 counts the following chains: %e A337107 24/1 24/2/1 24/4/2/1 24/8/4/2/1 %e A337107 24/3/1 24/6/2/1 24/12/4/2/1 %e A337107 24/4/1 24/6/3/1 24/12/6/2/1 %e A337107 24/6/1 24/8/2/1 24/12/6/3/1 %e A337107 24/8/1 24/8/4/1 %e A337107 24/12/1 24/12/2/1 %e A337107 24/12/3/1 %e A337107 24/12/4/1 %e A337107 24/12/6/1 %p A337107 b:= proc(n) option remember; expand(x*(`if`(n=1, 1, 0) + %p A337107 add(b(d), d=numtheory[divisors](n) minus {n}))) %p A337107 end: %p A337107 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n!)): %p A337107 seq(T(n), n=1..10); # _Alois P. Heinz_, Aug 23 2020 %t A337107 nv=5; %t A337107 chnsc[n_]:=Select[Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],n]}],{n}],MemberQ[#,1]&]; %t A337107 Table[Length[Select[chnsc[n!],Length[#]==k&]],{n,nv},{k,1+PrimeOmega[n!]}] %Y A337107 A097805 is the restriction to powers of 2. %Y A337107 A325617 is the maximal case. %Y A337107 A337105 gives row sums. %Y A337107 A337106 is column k = 3. %Y A337107 A000005 counts divisors. %Y A337107 A000142 lists factorial numbers. %Y A337107 A001055 counts factorizations. %Y A337107 A074206 counts chains of divisors from n to 1. %Y A337107 A027423 counts divisors of factorial numbers. %Y A337107 A067824 counts chains of divisors starting with n. %Y A337107 A076716 counts factorizations of factorial numbers. %Y A337107 A253249 counts chains of divisors. %Y A337107 A337071 counts chains starting with n!. %Y A337107 Cf. A022559, A124010, A167865, A251683, A337070, A337074. %K A337107 nonn,tabf %O A337107 1,6 %A A337107 _Gus Wiseman_, Aug 23 2020