cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337111 Number of length four 1..n vectors that contain their geometric mean.

This page as a plain text file.
%I A337111 #77 Jan 03 2023 02:10:08
%S A337111 1,2,3,16,17,18,19,56,105,106,107,144,145,146,147,208,209,306,307,320,
%T A337111 321,322,323,432,529,530,723,736,737,738,739,968,969,970,971,1176,
%U A337111 1177,1178,1179,1288,1289,1290,1291,1304,1401,1402,1403,1608,1777,2018,2019,2032
%N A337111 Number of length four 1..n vectors that contain their geometric mean.
%C A337111 From _David A. Corneth_, Aug 27 2020: (Start)
%C A337111 Let (a, b, g, n) be a tuple where g is the geometric mean of a*b*g*n and a, b, g <= n. Then there are two cases: g < n and g = n.
%C A337111 If g = n then (a, b, g, n) = (n, n, n, n) adding 1 to the number of permutations.
%C A337111 If g < n then a*b = g^4 / (g*n) = g^3 / n. Furthermore let s be the squarefree part of n (Cf. A007947). Then s | g and so candidates for g are (s*i) where 1 <= i < floor(n/s), depending on whether g^3 / n = (s*i)^3 / n is an integer.
%C A337111 It follows that for suitable values of i, (a, b) are a pair of divisors of (s*i)^3 / n where a*b = (s*i)^3 / n and max(a, b) <= n. (End)
%C A337111 Bounds: n + 12*(floor(n/4) + 2*floor(n/8) + 4*floor(n/9) + 2*floor(n/12) + 2*floor(n/16) + 4*floor(n/18)) <= a(n) <= n^4 - 14*(n-1). - _Hywel Normington_, Jan 25 2021
%H A337111 David A. Corneth, <a href="/A337111/b337111.txt">Table of n, a(n) for n = 1..10000</a>
%H A337111 Hywel Normington, <a href="https://github.com/Horep/Number-of-vectors-that-contain-their-average/blob/master/A337111.py">Python code</a>, 2020.
%H A337111 Hywel Normington, <a href="https://github.com/Horep/Number-of-vectors-that-contain-their-average/blob/master/Julia_Edition/A337111.jl">Julia code</a>, 2023.
%F A337111 Empirical: if A000189(n) = 1 then a(n) = a(n-1) + 1.
%F A337111 From _David A. Corneth_, Aug 25 2020: (Start)
%F A337111 The above holds. That is: if x^3 == 0 (mod n) has only one solution then a(n) = a(n-1) + 1. Proof:
%F A337111 Let (a, b, c, n) be such a tuple. Let without loss of generality c be the geometric mean of the tuple. Then a*b*c*n = c^4 and as c is not 0 we have c^3 = a*b*n. So then c^3 == 0 (mod n). If c^3 == 0 (mod n) has only 1 solution then c = n. This gives the tuple (n, n, n, n) which has 1 permutation. So giving a(n) = a(n-1) + 1. (End)
%F A337111 a(n) - a(n-1) == 1 (mod 12). - _Hywel Normington_, Sep 28 2020
%e A337111 For n = 2 the a(2) = 2 solutions are: (1,1,1,1) and (2,2,2,2).
%e A337111 For n = 4 the a(4) = 16 solutions are:
%e A337111   (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4),
%e A337111   and the 12 permutations of (1, 2, 2, 4).
%e A337111 For n = 40, the a(40)-a(39) = 109 new solutions are:
%e A337111   (40,40,40,40),
%e A337111   the 24 permutations of (1, 10, 25, 40),
%e A337111   the 12 permutations of (5, 5, 10, 40),
%e A337111   the 12 permutations of (5, 20, 40, 40),
%e A337111   the 24 permutations of (8, 20, 25, 40),
%e A337111   the 12 permutations of (10, 20, 20, 40),
%e A337111   and the 24 permutations of (25, 27, 30, 40).
%o A337111 (PARI) first(n) = { my(res = vector(n)); s = 0; for(i = 1, n, s += b(i);  res[i] = s; ); res }
%o A337111 b(n) = {my(resa = 1); my(s = factorback(factor(n)[, 1])); for(i = 1, n \ s - 1, s4 = (s*i)^3; if(s4 % n == 0, c = tuples((s*i)^3/n, s*i, n); for(i = 1, #c, resa+=qperms(c[i]) ) ) ); resa }
%o A337111 qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1,if(v[i]==v[i+1],t++,r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
%o A337111 tuples(n, s, u) = {my(res = List(), u4n, d, i); d = divisors(n); i = (#d + 1) \ 2; while(i > 0 && d[#d - i + 1] <= u, c = vecsort([d[i], d[#d - i + 1], s, u]); listput(res, c); i--); res} \\ _David A. Corneth_, Aug 28 2020
%Y A337111 Cf. A007947, A000189, A248435, A337110.
%K A337111 nonn,easy
%O A337111 1,2
%A A337111 _Hywel Normington_, Aug 16 2020