cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337121 a(n) is the number of ways the n-th prime number prime(n) can be represented as sum of two smaller odd prime numbers p1, p2 with prime(n) > p1 > (p2 minus the maximum odd prime factor of (p1-p2)).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 4, 3, 3, 5, 3, 6, 4, 4, 4, 7, 4, 4, 5, 6, 6, 6, 9, 7, 8, 8, 7, 7, 6, 11, 4, 11, 9, 7, 8, 9, 7, 13, 12, 6, 10, 15, 10, 9, 7, 13, 13, 11, 13, 10, 15, 10, 13, 14, 11, 13, 13, 12, 14, 17, 13, 13, 19, 9, 14, 19, 12, 8, 14, 22, 17, 14, 13, 16, 9, 15
Offset: 4

Views

Author

Lei Zhou, Aug 17 2020

Keywords

Comments

This sequence counts the cases such that prime(n) = p1 + p2 - MaxOddPrimeFactor(p1-p2), where MaxOddPrimeFactor(m) is defined as the maximum odd prime factor of the positive integer m. If there is no odd prime factor of m, MaxOddPrimeFactor(m) is defined as 1.
Conjecture: a(n) > 0 when n >= 4.
Some nonprime odd numbers, like 27, cannot be partitioned into the form of p1 + p2 - MaxOddPrimeFactor(p1-p2).

Examples

			When n=4, prime(4)=7, MaxOddPrimeFactor(5-3)=1, 7=5+3-1. This is the only case, so a(4)=1.
When n=5, prime(5)=11, MaxOddPrimeFactor(7-5)=1, 11=7+5-1. This is the only case, so a(5)=1.
When n=6, prime(6)=13, MaxOddPrimeFactor(11-3)=1, 13=11+3-1; and MaxOddPrimeFactor(11-5)=3, 13=11+5-3. Two cases found, so a(6)=2.
		

Programs

  • Mathematica
    MaxOddPrimeFactor[m_] :=
    Module[{factors, l, res}, factors = FactorInteger[m];
      l = Length[factors]; res = factors[[l, 1]]; If[res == 2, res = 1];
      res]
    Table[p = Prime[n]; p1 = NextPrime[p/2, -1]; ct = 0;
    While[p1 = NextPrime[p1]; p1 < p, p2 = NextPrime[p - p1, -1];
      While[p2 = NextPrime[p2]; p2 < p1,
       If[p == (p1 + p2 - MaxOddPrimeFactor[p1 - p2]), ct++]]]; ct, {n, 4,
       79}]