cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337126 Irregular triangular array read by rows. T(n,k) is the number of permutations of {1,2,...,n} with descent set {1,3,5,...,m} (where m is the greatest odd integer less than n) that have exactly k inversions, n=0, k=0, or n>0, 0<=k<=ceiling((n-1)^2/2).

This page as a plain text file.
%I A337126 #26 Jan 02 2021 12:24:03
%S A337126 1,1,0,1,0,1,1,0,0,1,1,2,1,0,0,1,2,3,4,3,2,1,0,0,0,1,2,5,7,9,10,10,8,
%T A337126 5,3,1,0,0,0,1,3,7,13,19,26,32,35,35,32,26,19,13,7,3,1,0,0,0,0,1,3,9,
%U A337126 18,32,50,72,95,117,134,143,145,138,122,101,78,55,36,21,10,4,1
%N A337126 Irregular triangular array read by rows.  T(n,k) is the number of permutations of {1,2,...,n} with descent set {1,3,5,...,m} (where m is the greatest odd integer less than n) that have exactly k inversions, n=0, k=0, or n>0, 0<=k<=ceiling((n-1)^2/2).
%D A337126 R. Stanley, Enumerative Combinatorics, volume 1, second edition, Cambridge University Press (2012), p.295.
%H A337126 Alois P. Heinz, <a href="/A337126/b337126.txt">Rows n = 0..50, flattened</a>
%F A337126 Sum_{k=1..ceiling((n-1)^2/2)} k * T(n,k) = A337193(n).
%e A337126 Triangle T(n,k) begins:
%e A337126   1;
%e A337126   1;
%e A337126   0, 1;
%e A337126   0, 1, 1;
%e A337126   0, 0, 1, 1, 2, 1;
%e A337126   0, 0, 1, 2, 3, 4, 3, 2, 1;
%e A337126   0, 0, 0, 1, 2, 5, 7, 9, 10, 10, 8, 5, 3, 1;
%e A337126   ...
%e A337126 T(6,5) = 5 because we have: {2, 1, 5, 4, 6, 3}, {2, 1, 6, 3, 5, 4},
%e A337126   {3, 1, 5, 2, 6, 4}, {3, 2, 4, 1, 6, 5}, {4, 1, 3, 2, 6, 5}.
%p A337126 b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1, add(
%p A337126       x^`if`(t=0, o-1+j, u-j)*b(o-1+j, u-j, 1-t), j=1..u)))
%p A337126     end:
%p A337126 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
%p A337126 seq(T(n), n=0..10);  # _Alois P. Heinz_, Aug 17 2020
%t A337126 Table[a = Drop[Subsets[Table[i, {i, 1, n - 1, 2}]], 1];f[list_] := (-1)^(Floor[n/2] - Length[list]) QBinomial[n, list[[1]], q] Product[
%t A337126      QBinomial[n - list[[i]], list[[i + 1]] - list[[i]], q], {i, 1,
%t A337126       Length[list] - 1}]; CoefficientList[Expand[FunctionExpand[Total[Map[f, a]] + (-1)^(Floor[n/2])]], q], {n, 0, 8}] // Grid
%t A337126 (* Second program: *)
%t A337126 b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1, Sum[x^If[t == 0, o - 1 + j, u - j]*b[o - 1 + j, u - j, 1 - t], {j, 1, u}]]];
%t A337126 T[n_] := CoefficientList[b[n, 0, 0], x];
%t A337126 T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, Jan 02 2021, after _Alois P. Heinz_ *)
%Y A337126 Cf. A000111 (row sums), A337193 (total number of inversions).
%K A337126 nonn,tabf
%O A337126 0,12
%A A337126 _Geoffrey Critzer_, Aug 17 2020