A337131 Row lengths of irregular triangle A335967.
1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 1, 1, 2, 1, 4, 8, 2, 2, 1, 1, 4, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 4, 1, 1, 4, 4, 16, 8, 2, 4, 2, 2, 1, 1, 2, 1, 4, 8, 2, 2, 1, 1, 4, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 8, 4, 1, 2, 1, 1, 4, 4, 8, 4, 16, 32, 8
Offset: 1
Keywords
Examples
For n = 13, the binary representation of 13 is "1101", so we consider the tilings of a size 4 staircase polyomino whose base has the following shape: ..... . . . ..... . . +---+ ..... | | . | +---+---+---+ | 1 1 | 0 | 1 | +-------+---+---+ There are two possible penultimate rows: ..... ..... . . . . . ..... . ..... . | . . . +---+ +---+ +---+---+---+ | 1 | 0 0 | | 1 | 0 | 1 | | +---+---+---+ | +---+---+---+ | | | | | | | | +-------+---+---+, +-------+---+---+ so a(13) = 2.
Links
- Rémy Sigrist, PARI program for A337131
Programs
-
PARI
\\ See Links section.
Comments