This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337135 #22 Jun 24 2021 20:20:53 %S A337135 1,1,1,2,1,2,1,2,2,2,1,3,1,2,2,4,1,3,1,4,2,2,1,5,2,2,2,4,1,4,1,4,2,2, %T A337135 2,7,1,2,2,5,1,5,1,4,3,2,1,7,2,3,2,4,1,5,2,5,2,2,1,8,1,2,3,6,2,5,1,4, %U A337135 2,4,1,9,1,2,3,4,2,5,1,7,4,2,1,8,2,2,2,6,1,8,2,4,2,2,2 %N A337135 a(1) = 1; for n > 1, a(n) = Sum_{d|n, d <= sqrt(n)} a(d). %C A337135 From _Gus Wiseman_, Mar 05 2021: (Start) %C A337135 This sequence counts all of the following essentially equivalent things: %C A337135 1. Chains of distinct inferior divisors from n to 1, where a divisor d|n is inferior if d <= n/d. Inferior divisors are counted by A038548 and listed by A161906. %C A337135 2. Chains of divisors from n to 1 whose first-quotients (in analogy with first-differences) are term-wise greater than or equal to their decapitation (maximum element removed). For example, the divisor chain q = 60/4/2/1 has first-quotients (15,2,2), which are >= (4,2,1), so q is counted under a(60). %C A337135 3. Chains of divisors from n to 1 such that x >= y^2 for all adjacent x, y. %C A337135 4. Factorizations of n where each factor is greater than or equal to the product of all previous factors. %C A337135 (End) %H A337135 Alois P. Heinz, <a href="/A337135/b337135.txt">Table of n, a(n) for n = 1..65536</a> %F A337135 G.f.: Sum_{k>=1} a(k) * x^(k^2) / (1 - x^k). %F A337135 a(2^n) = A018819(n). - _Gus Wiseman_, Mar 08 2021 %e A337135 From _Gus Wiseman_, Mar 05 2021: (Start) %e A337135 The a(n) chains for n = 1, 2, 4, 12, 16, 24, 36, 60: %e A337135 1 2/1 4/1 12/1 16/1 24/1 36/1 60/1 %e A337135 4/2/1 12/2/1 16/2/1 24/2/1 36/2/1 60/2/1 %e A337135 12/3/1 16/4/1 24/3/1 36/3/1 60/3/1 %e A337135 16/4/2/1 24/4/1 36/4/1 60/4/1 %e A337135 24/4/2/1 36/6/1 60/5/1 %e A337135 36/4/2/1 60/6/1 %e A337135 36/6/2/1 60/4/2/1 %e A337135 60/6/2/1 %e A337135 The a(n) factorizations for n = 2, 4, 12, 16, 24, 36, 60: %e A337135 2 4 12 16 24 36 60 %e A337135 2*2 2*6 2*8 3*8 4*9 2*30 %e A337135 3*4 4*4 4*6 6*6 3*20 %e A337135 2*2*4 2*12 2*18 4*15 %e A337135 2*2*6 3*12 5*12 %e A337135 2*2*9 6*10 %e A337135 2*3*6 2*2*15 %e A337135 2*3*10 %e A337135 (End) %p A337135 a:= proc(n) option remember; `if`(n=1, 1, add( %p A337135 `if`(d<=n/d, a(d), 0), d=numtheory[divisors](n))) %p A337135 end: %p A337135 seq(a(n), n=1..128); # _Alois P. Heinz_, Jun 24 2021 %t A337135 a[1] = 1; a[n_] := a[n] = DivisorSum[n, a[#] &, # <= Sqrt[n] &]; Table[a[n], {n, 95}] %t A337135 (* second program *) %t A337135 asc[n_]:=Prepend[#,n]&/@Prepend[Join@@Table[asc[d],{d,Select[Divisors[n],#<n&&#<=n/#&]}],{}];Table[Length[Select[asc[n],MemberQ[#,1]&]],{n,100}] (* _Gus Wiseman_, Mar 05 2021 *) %Y A337135 Cf. A002033, A008578 (positions of 1's), A068108. %Y A337135 The restriction to powers of 2 is A018819. %Y A337135 Not requiring inferiority gives A074206 (ordered factorizations). %Y A337135 The strictly inferior version is A342083. %Y A337135 The strictly superior version is A342084. %Y A337135 The weakly superior version is A342085. %Y A337135 The additive version is A000929, or A342098 forbidding equality. %Y A337135 A000005 counts divisors, with sum A000203. %Y A337135 A001055 counts factorizations. %Y A337135 A003238 counts chains of divisors summing to n-1, with strict case A122651. %Y A337135 A038548 counts inferior (or superior) divisors. %Y A337135 A056924 counts strictly inferior (or strictly superior) divisors. %Y A337135 A067824 counts strict chains of divisors starting with n. %Y A337135 A167865 counts strict chains of divisors > 1 summing to n. %Y A337135 A207375 lists central divisors. %Y A337135 A253249 counts strict chains of divisors. %Y A337135 A334996 counts ordered factorizations by product and length. %Y A337135 A334997 counts chains of divisors of n by length. %Y A337135 A342086 counts strict factorizations of divisors. %Y A337135 - Inferior: A033676, A066839, A072499, A161906. %Y A337135 - Superior: A033677, A070038, A161908. %Y A337135 - Strictly Inferior: A060775, A070039, A333806, A341674. %Y A337135 - Strictly Superior: A048098, A064052, A140271, A238535, A341673. %Y A337135 Cf. A001248, A006530, A020639, A040039, A045690, A337105, A342087, A342094, A342095, A342096, A342097. %K A337135 nonn %O A337135 1,4 %A A337135 _Ilya Gutkovskiy_, Nov 21 2020