cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A337146 Numbers k such that abs(A337145(k))/8 is prime.

Original entry on oeis.org

1, 13, 41, 50, 53, 62, 67, 76, 89, 98, 108, 113, 137, 180, 211, 225, 236, 240, 250, 281, 293, 300, 303, 308, 355, 362, 384, 392, 393, 400, 414, 425, 434, 458, 468, 477, 489, 525, 588, 589, 593, 625, 653, 662, 664, 671, 673, 674, 696, 698, 732, 758, 765, 795, 800, 819, 831, 851, 880, 916, 933, 938
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 27 2021

Keywords

Examples

			a(3) = 41 is a term because A337145(41) = det(1097, 883; 877, 967) = 286408 = 8*35801 and 35801 is prime.
		

Crossrefs

Programs

  • Maple
    R:= NULL:
    count:= 0:
    L:= [-7, -5, -3, -1]:
    for k from 1 while count < 100 do
      for i from 1 to 4 do
       for x from L[i]+8 by 8 do until isprime(x);
       L[i]:= x;
      od;
      v:= abs(L[1]*L[4]-L[2]*L[3])/8;
      if isprime(v) then count:= count+1; R:= R, k; fi
    od:
    R;

A337147 Primes abs(A337145(k))/8 for k in A337146.

Original entry on oeis.org

13, 3529, 35801, 38447, 36299, 29399, 30757, 29389, 109211, 101141, 82037, 119737, 203227, 203381, 237143, 439753, 197677, 329533, 391337, 611449, 697757, 1082233, 840347, 1054213, 1154893, 1044343, 1249139, 962587, 990287, 1012861, 1051181, 1060051, 753847, 1182737, 889237, 605333, 769997
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 27 2021

Keywords

Examples

			A337146(3) = 41 with A337145(41) = det(1097, 883; 877, 967) = 286408 = 8*35801 so a(3) = 35801.
		

Crossrefs

Programs

  • Maple
    R:= NULL:
    count:= 0:
    L:= [-7, -5, -3, -1]:
    for k from 1 while count < 100 do
      for i from 1 to 4 do
       for x from L[i]+8 by 8 do until isprime(x);
       L[i]:= x;
      od;
      v:= abs(L[1]*L[4]-L[2]*L[3])/8;
      if isprime(v) then count:= count+1; R:= R, v; fi
    od:
    R;
Showing 1-2 of 2 results.