This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337149 #26 Jan 31 2021 16:36:55 %S A337149 1,2,3,4,5,6,7,8,9,10,11,12,14,16,17,18,22,24,25,27,28,31,33,34,36,39, %T A337149 41,43,47,48,49,54,57,62,65,71,72,73,78,82,86,91,94,97,98,103,105,107, %U A337149 108,111,114,121,123,124,129,130,135,137,142,145,153,155,159 %N A337149 Positive integers k such that the number of steps it takes to reach 1 in the '3x+1' problem is different for all j < k. %C A337149 Positive integers k such that A337144(k) = 1. %C A337149 Or positive integers k such that A006577(k) != A006577(j) for all j = 1..k-1. %C A337149 Different from A129304. %H A337149 Alois P. Heinz, <a href="/A337149/b337149.txt">Table of n, a(n) for n = 1..1000</a> %H A337149 Wikipedia, <a href="https://en.wikipedia.org/wiki/Collatz_conjecture">Collatz Conjecture</a> %H A337149 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %F A337149 A006577(a(n)) = A337150(n). %p A337149 collatz:= proc(n) option remember; `if`(n=1, 0, %p A337149 1 + collatz(`if`(n::even, n/2, 3*n+1))) %p A337149 end: %p A337149 b:= proc() 0 end: %p A337149 g:= proc(n) option remember; local t; %p A337149 `if`(n=1, 0, g(n-1)); %p A337149 t:= collatz(n); b(t):= b(t)+1 %p A337149 end: %p A337149 a:= proc(n) option remember; local k; for k %p A337149 from 1+a(n-1) while g(k)>1 do od; k %p A337149 end: a(0):=0: %p A337149 seq(a(n), n=1..100); %t A337149 collatz[n_] := collatz[n] = If[n==1, 0, %t A337149 1+collatz[If[EvenQ[n], n/2, 3n+1]]]; %t A337149 b[_] = 0; %t A337149 g[n_] := g[n] = Module[{t}, If[n==1, 0, g[n-1]]; %t A337149 t = collatz[n]; b[t] = b[t]+1]; %t A337149 a[n_] := a[n] = Module[{k}, For[k = 1+a[n-1], %t A337149 g[k] > 1, k++]; k]; a[0] = 0; %t A337149 Array[a, 100] (* _Jean-François Alcover_, Jan 30 2021, after _Alois P. Heinz_ *) %Y A337149 Cf. A006577, A129304, A337144, A337150. %K A337149 nonn,look %O A337149 1,2 %A A337149 _Alois P. Heinz_, Jan 27 2021