cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337150 Nonnegative integers in the order in which they appear first in A006577.

This page as a plain text file.
%I A337150 #28 Oct 06 2021 07:56:16
%S A337150 0,1,7,2,5,8,16,3,19,6,14,9,17,4,12,20,15,10,23,111,18,106,26,13,21,
%T A337150 34,109,29,104,11,24,112,32,107,27,102,22,115,35,110,30,92,105,118,25,
%U A337150 87,38,100,113,69,33,95,46,108,121,28,41,90,103,116,36,85,54
%N A337150 Nonnegative integers in the order in which they appear first in A006577.
%C A337150 This is A006577 with duplicates removed.
%C A337150 This is a permutation of the nonnegative integers.
%H A337150 Alois P. Heinz, <a href="/A337150/b337150.txt">Table of n, a(n) for n = 1..1000</a>
%H A337150 Wikipedia, <a href="https://en.wikipedia.org/wiki/Collatz_conjecture">Collatz Conjecture</a>
%H A337150 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the nonnegative integers</a>
%H A337150 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F A337150 a(n) = A006577(A337149(n)).
%F A337150 a(n) = A006577(n) for 1 <= n <= 12.
%p A337150 collatz:= proc(n) option remember; `if`(n=1, 0,
%p A337150    1 + collatz(`if`(n::even, n/2, 3*n+1)))
%p A337150 end:
%p A337150 b:= proc() 0 end:
%p A337150 g:= proc(n) option remember; local t;
%p A337150      `if`(n=1, 0, g(n-1));
%p A337150       t:= collatz(n); b(t):= b(t)+1
%p A337150     end:
%p A337150 h:= proc(n) option remember; local k; for k
%p A337150       from 1+h(n-1) while g(k)>1 do od; k
%p A337150     end: h(0):=0:
%p A337150 a:= n-> collatz(h(n)):
%p A337150 seq(a(n), n=1..100);
%t A337150 collatz[n_] := collatz[n] = If[n==1, 0,
%t A337150    1 + collatz[If[EvenQ[n], n/2, 3n+1]]];
%t A337150 b[_] = 0;
%t A337150 g[n_] := g[n] = Module[{t}, If[n==1, 0, g[n-1]];
%t A337150    t = collatz[n]; b[t] = b[t]+1];
%t A337150 h[n_] := h[n] = Module[{k}, For[k = 1+h[n-1],
%t A337150    g[k]>1, k++]; k]; h[0] = 0;
%t A337150 a[n_] := a[n] = collatz[h[n]];
%t A337150 Array[a, 100] (* _Jean-François Alcover_, Jan 30 2021, after _Alois P. Heinz_ *)
%Y A337150 Cf. A006577, A337149.
%K A337150 nonn,look
%O A337150 1,3
%A A337150 _Alois P. Heinz_, Jan 27 2021