cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337151 a(n) = (n!)^2 * Sum_{k=0..n} (-1)^(n-k) * (k+1) / ((n-k)!)^2.

This page as a plain text file.
%I A337151 #11 Jul 11 2025 06:18:33
%S A337151 1,1,5,53,977,27649,1111429,60147205,4213400897,370767834593,
%T A337151 40025019652901,5199763957426741,800136077306754385,
%U A337151 143904538461745813153,29906871652295426507237,7111902097369951568209349,1918658066681198636106335489,582817397769914314847061436225
%N A337151 a(n) = (n!)^2 * Sum_{k=0..n} (-1)^(n-k) * (k+1) / ((n-k)!)^2.
%F A337151 Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - x)^2.
%F A337151 a(n) ~ BesselJ(0,2) * n!^2 * n. - _Vaclav Kotesovec_, Jul 11 2025
%p A337151 a:= n-> n!^2 * add((-1)^k*(n-k+1)/k!^2, k=0..n):
%p A337151 seq(a(n), n=0..20);  # _Alois P. Heinz_, Jan 27 2021
%t A337151 Table[n!^2 Sum[(-1)^(n - k) (k + 1)/(n - k)!^2, {k, 0, n}], {n, 0, 17}]
%t A337151 nmax = 17; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x)^2, {x, 0, nmax}], x] Range[0, nmax]!^2
%Y A337151 Cf. A000255, A073701, A336809.
%K A337151 nonn
%O A337151 0,3
%A A337151 _Ilya Gutkovskiy_, Jan 27 2021