This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337165 #51 Feb 07 2021 07:04:26 %S A337165 1,0,1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,2,0,0,1,0,0,0,3,0,0,1,0,0,0,0,4,0, %T A337165 0,1,0,0,1,0,0,5,0,0,1,0,1,0,3,0,0,6,0,0,1,0,0,2,0,6,0,0,7,0,0,1,0,0, %U A337165 0,3,0,10,0,0,8,0,0,1,0,0,0,1,4,0,15,0,0,9,0,0,1 %N A337165 Number T(n,k) of compositions of n into k nonzero squares; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A337165 Alois P. Heinz, <a href="/A337165/b337165.txt">Rows n = 0..350, flattened</a> %F A337165 G.f. of column k: (Sum_{j>=1} x^(j^2))^k. %F A337165 Sum_{k=0..n} k * T(n,k) = A281704(n). %F A337165 Sum_{k=0..n} (-1)^k * T(n,k) = A317665(n). %e A337165 Triangle T(n,k) begins: %e A337165 1; %e A337165 0, 1; %e A337165 0, 0, 1; %e A337165 0, 0, 0, 1; %e A337165 0, 1, 0, 0, 1; %e A337165 0, 0, 2, 0, 0, 1; %e A337165 0, 0, 0, 3, 0, 0, 1; %e A337165 0, 0, 0, 0, 4, 0, 0, 1; %e A337165 0, 0, 1, 0, 0, 5, 0, 0, 1; %e A337165 0, 1, 0, 3, 0, 0, 6, 0, 0, 1; %e A337165 0, 0, 2, 0, 6, 0, 0, 7, 0, 0, 1; %e A337165 0, 0, 0, 3, 0, 10, 0, 0, 8, 0, 0, 1; %e A337165 0, 0, 0, 1, 4, 0, 15, 0, 0, 9, 0, 0, 1; %e A337165 ... %p A337165 b:= proc(n) option remember; `if`(n=0, 1, add((s-> %p A337165 `if`(s>n, 0, expand(x*b(n-s))))(j^2), j=1..isqrt(n))) %p A337165 end: %p A337165 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): %p A337165 seq(T(n), n=0..14); %t A337165 b[n_] := b[n] = If[n == 0, 1, Sum[With[{s = j^2}, %t A337165 If[s>n, 0, Expand[x*b[n - s]]]], {j, 1, Sqrt[n]}]]; %t A337165 T[n_] := CoefficientList[b[n], x]; %t A337165 T /@ Range[0, 14] // Flatten (* _Jean-François Alcover_, Feb 07 2021, after _Alois P. Heinz_ *) %Y A337165 Columns k=0-10 give: A000007, A010052, A063725, A063691, A063730, A340481, A340905, A340906, A340915, A340946, A340947. %Y A337165 Row sums give A006456. %Y A337165 T(2n,n) gives A338464. %Y A337165 Main diagonal gives A000012. %Y A337165 Cf. A000290, A281704, A317665, A341040. %K A337165 nonn,tabl %O A337165 0,18 %A A337165 _Alois P. Heinz_, Feb 03 2021