This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337166 #9 Aug 19 2022 04:37:58 %S A337166 1,0,-1,-1,17,99,-926,-20385,25969,7206059,90298826,-3271747557, %T A337166 -149187119280,236884125841,233237751740057,7110791842650002, %U A337166 -293292401726383791,-32980038867059802549,-498084376275585698222,114298048468067933019627,9072219653673352772098960 %N A337166 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(1 + x - BesselI(0,2*sqrt(x))). %F A337166 a(0) = 1; a(n) = -(1/n) * Sum_{k=0..n-2} binomial(n,k)^2 * (n-k) * a(k). %p A337166 A337166 := proc(n) %p A337166 option remember ; %p A337166 if n = 0 then %p A337166 1; %p A337166 else %p A337166 add(binomial(n,k)^2*(n-k)*procname(k),k=0..n-2) ; %p A337166 -%/n ; %p A337166 end if; %p A337166 simplify(%) ; %p A337166 end proc: %p A337166 seq(A337166(n),n=0..40) ; # _R. J. Mathar_, Aug 19 2022 %t A337166 nmax = 20; CoefficientList[Series[Exp[1 + x - BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2 %t A337166 a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Binomial[n, k]^2 (n - k) a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}] %Y A337166 Cf. A061696, A293037, A336209. %K A337166 sign %O A337166 0,5 %A A337166 _Ilya Gutkovskiy_, Jan 28 2021