This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337167 #36 Feb 14 2021 08:18:41 %S A337167 1,4,25,199,1795,17422,177463,1870960,20241403,223438852,2506596547, %T A337167 28494103183,327507800725,3799735202218,44440058006593, %U A337167 523388751658831,6201937444137619,73888034816382820,884517283667145259,10634234680321209373,128347834921058404249 %N A337167 a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1). %C A337167 Binomial transform of A005159. %H A337167 Seiichi Manyama, <a href="/A337167/b337167.txt">Table of n, a(n) for n = 0..901</a> %H A337167 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A337167 G.f. A(x) satisfies: A(x) = 1 / (1 - x) + 3*x*A(x)^2. %F A337167 G.f.: (1 - sqrt(1 - 12*x / (1 - x))) / (6*x). %F A337167 E.g.f.: exp(7*x) * (BesselI(0,6*x) - BesselI(1,6*x)). %F A337167 a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * Catalan(k). %F A337167 a(n) = 2F1([1/2, -n], [2], -12), where 2F1 is the hypergeometric function. %F A337167 D-finite with recurrence (n+1) * a(n) = 2 * (7*n-3) * a(n-1) - 13 * (n-1) * a(n-2) for n > 1. - _Seiichi Manyama_, Jan 31 2021 %F A337167 a(n) ~ 13^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 14 2021 %t A337167 a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}] %t A337167 Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}] %t A337167 Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}] %o A337167 (PARI) {a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ _Seiichi Manyama_, Jan 31 2021 %o A337167 (PARI) my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ _Seiichi Manyama_, Feb 01 2021 %Y A337167 Column k=3 of A340968. %Y A337167 Cf. A000108, A005159, A007317, A162326, A337169, A338979. %K A337167 nonn %O A337167 0,2 %A A337167 _Ilya Gutkovskiy_, Jan 28 2021