This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337169 #13 Aug 02 2023 11:45:20 %S A337169 1,2,13,89,691,5720,49555,443630,4071595,38105342,362271823, %T A337169 3488988101,33967656469,333752559392,3305347855573,32960499084305, %U A337169 330664662067795,3335002912108670,33796042027030855,343940115478559699,3513702627928096681,36021007341027948032 %N A337169 a(n) = (-1)^n + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1). %C A337169 Inverse binomial transform of A005159. %H A337169 Seiichi Manyama, <a href="/A337169/b337169.txt">Table of n, a(n) for n = 0..964</a> %F A337169 G.f. A(x) satisfies: A(x) = 1 / (1 + x) + 3*x*A(x)^2. %F A337169 G.f.: (1 - sqrt(1 - 12*x / (1 + x))) / (6*x). %F A337169 E.g.f.: exp(5*x) * (BesselI(0,6*x) - BesselI(1,6*x)). %F A337169 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 3^k * Catalan(k). %F A337169 a(n) ~ 11^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Nov 13 2021 %t A337169 a[n_] := a[n] = (-1)^n + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}] %t A337169 Table[Sum[(-1)^(n - k) Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 21}] %t A337169 Table[(-1)^n Hypergeometric2F1[1/2, -n, 2, 12], {n, 0, 21}] %Y A337169 Cf. A000108, A005043, A005159, A337167, A337168. %K A337169 nonn %O A337169 0,2 %A A337169 _Ilya Gutkovskiy_, Jan 28 2021