cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337206 Cardinality of maximal level sets of Gini index on integer partitions.

This page as a plain text file.
%I A337206 #28 Jan 20 2023 07:54:20
%S A337206 1,1,1,1,1,1,2,2,2,3,3,3,4,5,5,7,8,9,11,13,15,17,21,23,28,33,38,44,52,
%T A337206 60,72,81,95,112,128,147,175,195,233,267,305,353,412,462,533,617,703,
%U A337206 807,932,1052,1210,1389,1569,1785,2060,2315,2642,3023,3405,3876,4413,4968
%N A337206 Cardinality of maximal level sets of Gini index on integer partitions.
%C A337206 a(n) is a lower bound on A076269(n).
%H A337206 Alois P. Heinz, <a href="/A337206/b337206.txt">Table of n, a(n) for n = 0..300</a>
%H A337206 Grant Kopitzke, <a href="https://arxiv.org/abs/2005.04284">The Gini Index of an Integer Partition</a>, arXiv:2005.04284 [math.CO], 2020.
%F A337206 G.f.: Product_{n=1..oo} 1/(1-q^(binomial(n+1,2))x^n)-1 = Sum_{n=1..oo} Sum_{lambda a partition of n} q^(binomial(n+1,2)-g(lambda))x^n, where g(lambda) is the Gini index of lambda.
%F A337206 a(n) = max_{k=0..A161680(n)} A264034(n,k). - _Alois P. Heinz_, Jan 20 2023
%e A337206 For n=6 the maximal level set of the Gini index contains the partitions (3,3) and (4,1,1). So a(6)=2.
%p A337206 b:= proc(n, i, w) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A337206       b(n, i-1, w)+expand(x^(w*i)*b(n-i, min(i, n-i), w+1))))
%p A337206     end:
%p A337206 a:= n-> max(coeffs(b(n$2, 0))):
%p A337206 seq(a(n), n=0..61);  # _Alois P. Heinz_, Jan 20 2023
%t A337206 m = 75;
%t A337206 p = Product[ 1/(1 - q^Binomial[i + 1, 2] x^i), {i, 1, m}];
%t A337206 psn = Expand@Normal@Series[ p, {x, 0, m}];
%t A337206 psnc = CoefficientList[CoefficientList[psn, {x}, {m}], {q}];
%t A337206 Map[Max, psnc]
%Y A337206 Lower bound on A076269.
%Y A337206 Cf. A161680, A264034.
%K A337206 nonn
%O A337206 0,7
%A A337206 _Grant Kopitzke_, Aug 18 2020
%E A337206 Typo in a(43) corrected by _Alois P. Heinz_, Jan 20 2023