This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337210 #21 Oct 05 2020 12:50:28 %S A337210 0,1,2,3,4,1,2,6,1,3,8,2,3,1,5,1,6,12,3,4,2,6,3,5,2,7,4,5,1,11,1,12,2, %T A337210 10,5,6,1,14,3,10,1,3,5,6,7,1,3,6,2,15,2,3,5,7,8,1,3,8,2,4,5,4,14,8,9, %U A337210 6,12,2,21,1,5,8,9,10,4,18,6,15,1,5,10,10 %N A337210 Irregular triangle read by rows in which row n has the least number of integers such that the sum of the square root of those integers is the best approximation to and less than the square root of n. %C A337210 All approximations are less than or equal to one. An approximation sqrt(n) - sqrt(n-1) < 1 for all n > 1. %C A337210 Often integers of the form 4n-2 have as their best approximation just the two consecutive integers {n-1, n}. %C A337210 Those that are not: 20, 21, 25, 27, 30, 31, 36, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 52, ... . %C A337210 Sometimes two approximations are equal, i.e.; for n = 39, sqrt(2) + sqrt(4) + sqrt(8) is the same as sqrt(4) + sqrt(18). In this sequence the simplest form is used, i.e.; {4, 18}. %F A337210 s = sum(sqrt(i)) for carefully chosen integers i less than n such that s < n yet is the best approximation to n. %e A337210 For row 1, just the sqrt(0) < sqrt(1); %e A337210 for row 2, just the sqrt(1) < sqrt(2); %e A337210 for row 3, just the sqrt(2) < sqrt(3); %e A337210 for row 4, just the sqrt(3) < sqrt(4); %e A337210 for row 5, just the sqrt(4) < sqrt(5); %e A337210 for row 6, sqrt(1) + sqrt(2) < sqrt(6); %e A337210 for row 7, just the sqrt(6) < sqrt(7); %e A337210 for row 8, sqrt(1) + sqrt(3) < sqrt(8); %e A337210 for row 9, just the sqrt(8) < sqrt(9); %e A337210 for row 10, sqrt(2) + sqrt(3) is the best approximation; %e A337210 for row 11, sqrt(1) + sqrt(5) < sqrt(11); %e A337210 for row 12, sqrt(1) + sqrt(6) < sqrt(12); %e A337210 for row 27, sqrt(1) + sqrt(3) + sqrt(6) is the best approximation; %e A337210 for row 63, 2*sqrt(3) + 2*sqrt(5) is the best approximation and appears as the integers {12, 20}; %e A337210 for row 107, sqrt(3) + sqrt(6) + sqrt(9) + sqrt(10) is the best approximation; %e A337210 for row 165, sqrt(1) + 2*sqrt(2) + 2*sqrt(3) + sqrt(5) + sqrt(11) is the best approximation and appears as the integers {1, 5, 8, 11, 12}; %e A337210 for row 218, sqrt(1) + sqrt(3) + sqrt(5) + sqrt(6) + sqrt(13) + sqrt(14) is the best approximation; etc. %e A337210 Triangle begins: %e A337210 0; %e A337210 1; %e A337210 2; %e A337210 3; %e A337210 4; %e A337210 1, 2; %e A337210 6; %e A337210 1, 3; %e A337210 8; %e A337210 2, 3; %e A337210 ... %t A337210 y[x_] := Block[{lst = {x - 1}, min = Sqrt[x] - Sqrt[x - 1], rad = 1, sx = Sqrt[x]}, %t A337210 If[x > 5, lim = (sx - 1)^2; %t A337210 Do[diff = sx - (Sqrt[a] + Sqrt[b]); %t A337210 If[diff < min && diff > 0, min = diff; lst = {b, a}; rad = 2], %t A337210 {a, 2, lim}, {b, 1, a - 1}]]; %t A337210 If[x > 17, lim = (sx - Sum[Sqrt[z], {z, 2}])^2; %t A337210 Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c]); %t A337210 If[diff < 0, Continue[]]; %t A337210 If[diff < min && diff > 0, min = diff; lst = {c, b, a}; rad = 3], %t A337210 {a, 3, lim}, {b, 2, a - 1}, {c, 1, b - 1}]]; %t A337210 If[x > 37, lim = (sx - Sum[Sqrt[z], {z, 3}])^2; %t A337210 Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d]); %t A337210 If[diff < 0, Continue[]]; %t A337210 If[diff < min && diff > 0, min = diff; lst = {d, c, b, a}; %t A337210 rad = 4], %t A337210 {a, 4, lim}, {b, 3, a - 1}, {c, 2, b - 1}, {d, 1, c - 1}]]; %t A337210 If[x > 71, lim = (sx - Sum[Sqrt[z], {z, 4}])^2; %t A337210 Do[diff = sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e]); %t A337210 If[diff < 0, Continue[]]; %t A337210 If[diff < min && diff > 0, min = diff; lst = {e, d, c, b, a}; %t A337210 rad = 5], %t A337210 {a, 5, lim}, {b, 4, a - 1}, {c, 3, b - 1}, {d, 2, c - 1}, {e, 1, %t A337210 d - 1}]]; %t A337210 If[x > 117, lim = (sx - Sum[Sqrt[z], {z, 5}])^2; %t A337210 Do[diff = %t A337210 sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e] + Sqrt[f]); %t A337210 If[diff < 0, Continue[]]; %t A337210 If[diff < min && diff > 0, min = diff; lst = {f, e, d, c, b, a}; %t A337210 rad = 6], %t A337210 {a, 6, lim}, {b, 5, a - 1}, {c, 4, b - 1}, {d, 3, c - 1}, {e, 2, %t A337210 d - 1}, {f, 1, e - 1}]]; %t A337210 If[x > 181, lim = (sx - Sum[Sqrt[z], {z, 6}])^2; %t A337210 Do[diff = %t A337210 sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e] + Sqrt[f] + %t A337210 Sqrt[g]); If[diff < 0, Continue[]]; %t A337210 If[diff < min && diff > 0, min = diff; %t A337210 lst = {g, f, e, d, c, b, a}; rad = 7], %t A337210 {a, 7, lim}, {b, 6, a - 1}, {c, 5, b - 1}, {d, 4, c - 1}, {e, 3, %t A337210 d - 1}, {f, 2, e - 1}, {g, 1, f - 1}]]; %t A337210 If[x > 265, lim = (sx - Sum[Sqrt[z], {z, 7}])^2; %t A337210 Do[diff = %t A337210 sx - (Sqrt[a] + Sqrt[b] + Sqrt[c] + Sqrt[d] + Sqrt[e] + Sqrt[f] + %t A337210 Sqrt[g] + Sqrt[h]); If[diff < 0, Continue[]]; %t A337210 If[diff < min && diff > 0, min = diff; %t A337210 lst = {g, f, e, d, c, b, a}; rad = 8], %t A337210 {a, 8, lim}, {b, 7, a - 1}, {c, 6, b - 1}, {d, 5, c - 1}, {e, 4, %t A337210 d - 1}, {f, 3, e - 1}, {g, 2, f - 1}, {h, 1, g - 1}]]; %t A337210 lst]; %t A337210 Array[ y, 50] // Flatten %Y A337210 Inspired by A045880. %Y A337210 Cf. A337211. %K A337210 nonn,tabf %O A337210 1,3 %A A337210 _Robert G. Wilson v_, Aug 19 2020