cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337213 Primes prime(k) such that prime(k) + 2*prime(k+1) and prime(k) + 2*prime(k+1) + 4*prime(k+2) are prime.

This page as a plain text file.
%I A337213 #14 Aug 20 2020 13:40:35
%S A337213 3,43,59,127,599,673,937,1451,1619,1847,2089,2311,2953,3343,3613,3677,
%T A337213 4817,4909,4973,5519,5639,5857,6359,6389,7043,7069,7537,8867,9157,
%U A337213 9341,10039,11069,12301,12907,13327,13729,14293,14549,15619,15739,15877,17077,17351,17977,18253,19211,19387,19469
%N A337213 Primes prime(k) such that prime(k) + 2*prime(k+1) and prime(k) + 2*prime(k+1) + 4*prime(k+2) are prime.
%H A337213 Robert Israel, <a href="/A337213/b337213.txt">Table of n, a(n) for n = 1..10000</a>
%e A337213 a(3)=59 is in the sequence because 59, 61, 67 are consecutive primes and 59+2*61=181 and 59+2*61+4*67=449 are prime.
%p A337213 N:= 2000: # to get terms in the first N primes
%p A337213 P:= [seq(ithprime(i),i=1..N+2)]:
%p A337213 P[select(i -> isprime(P[i]+2*P[i+1]) and isprime(P[i]+2*P[i+1]+4*P[i+2]), [$1..N])];
%Y A337213 Cf. A175914, A337214.
%K A337213 nonn
%O A337213 1,1
%A A337213 _J. M. Bergot_ and _Robert Israel_, Aug 19 2020