This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337214 #14 Aug 21 2020 01:40:02 %S A337214 43,599,1451,8867,18253,19211,19469,27329,29863,40787,41141,75403, %T A337214 85991,104707,119921,131009,137383,150551,167309,173263,195977,201247, %U A337214 222863,277961,285199,350429,364333,374461,382747,385783,406499,419743,423803,466673,496289,512821,532241,541529,541579 %N A337214 Primes prime(k) such that prime(k) + 2*prime(k+1), prime(k) + 2*prime(k+1) + 4*prime(k+2) and prime(k) + 2*prime(k+1) + 4*prime(k+2) + 8*prime(k+3) are all prime. %H A337214 Chai Wah Wu, <a href="/A337214/b337214.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..2000 from Robert Israel) %e A337214 a(3)=1451 is in the sequence because 1451, 1453, 1459, 1471 are consecutive primes and 1451+2*1453=4357, 1451+2*1453+4*1459=10193, and 1451+2*1453+4*1459+8*1471=21961 are all prime. %p A337214 N:= 60000: # to get terms in the first N primes %p A337214 P:= [seq(ithprime(i), i=1..N+3)]: %p A337214 P[select(i -> isprime(P[i]+2*P[i+1]) and isprime(P[i]+2*P[i+1]+4*P[i+2]) and isprime(P[i]+2*P[i+1]+4*P[i+2]+8*P[i+3]) , [$1..N])]; %Y A337214 Cf. A175914, A337213. %K A337214 nonn %O A337214 1,1 %A A337214 _J. M. Bergot_ and _Robert Israel_, Aug 19 2020