cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337223 a(n) is the least number that can be obtained by replacing some cube XXX in the binary expansion of n by X.

This page as a plain text file.
%I A337223 #11 Aug 22 2020 18:50:56
%S A337223 0,1,2,3,4,5,6,1,2,9,10,11,12,13,2,3,4,5,18,19,20,21,22,5,6,25,26,27,
%T A337223 4,5,6,7,8,9,10,11,36,37,38,9,10,41,2,43,44,45,10,11,12,13,50,51,52,
%U A337223 53,54,13,8,9,10,11,12,13,14,3,4,17,18,19,20,21,22,17
%N A337223 a(n) is the least number that can be obtained by replacing some cube XXX in the binary expansion of n by X.
%C A337223 Leading zeros in binary expansions are ignored.
%C A337223 Fixed points correspond to A286262.
%H A337223 Rémy Sigrist, <a href="/A337223/b337223.txt">Table of n, a(n) for n = 0..8192</a>
%H A337223 Rémy Sigrist, <a href="/A337223/a337223.gp.txt">PARI program for A337223</a>
%H A337223 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A337223 a(A297405(n)) = n for any n > 0.
%e A337223 The first terms, in decimal and in binary, are:
%e A337223   n   a(n)  bin(n)  bin(a(n))
%e A337223   --  ----  ------  ---------
%e A337223    0     0       0          0
%e A337223    1     1       1          1
%e A337223    2     2      10         10
%e A337223    3     3      11         11
%e A337223    4     4     100        100
%e A337223    5     5     101        101
%e A337223    6     6     110        110
%e A337223    7     1     111          1
%e A337223    8     2    1000         10
%e A337223    9     9    1001       1001
%e A337223   10    10    1010       1010
%e A337223   11    11    1011       1011
%e A337223   12    12    1100       1100
%e A337223   13    13    1101       1101
%e A337223   14     2    1110         10
%e A337223   15     3    1111         11
%e A337223   16     4   10000        100
%o A337223 (PARI) See Links section.
%Y A337223 Cf. A286262, A297405, A337222, A337224.
%K A337223 nonn,base
%O A337223 0,3
%A A337223 _Rémy Sigrist_, Aug 19 2020