This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337227 #32 Feb 18 2022 19:13:07 %S A337227 11,9,13,14,15,16,17,18,19,20,180,1,19,37,55,73,91,109,127,145,221, %T A337227 166,1,19,37,55,73,91,109,127,231,149,233,1,19,37,55,73,91,109,241, %U A337227 132,243,244,1,19,37,55,73,91,251,115,253,254,255,1,19,37,55,73,261,98,263,264,265,266,1,19 %N A337227 a(n) = difference between the starting positions of the first two occurrences of n in the Champernowne string (starting at 0) 01234567891011121314151617181920... (cf. A033307). %C A337227 Consider the infinite string %C A337227 01234567891011121314151617181920... (cf. A033307) %C A337227 formed by the concatenation of all decimal digits of all nonnegative numbers. From the position of the first digit of the first occurrence of the number n find the number of digits one has to move forward to get to the start of the second occurrence of n. This is a(n). %H A337227 Scott R. Shannon, <a href="/A337227/a337227_1.png">Image of the first 100000 terms</a>. %e A337227 The infinite string corresponding to the concatenation of all decimal digits >=0 starts "012345678910111213141516171819202122232425....". %e A337227 a(0) = 11 because '0' appears at positions 1 and 12. %e A337227 a(1) = 9 because '1' appears at positions 2 and 11. %e A337227 a(10) = 180 because '10' appears starting at positions 11 and 191. %e A337227 a(11) = 1 because '11' appears starting at positions 13 and 14. %o A337227 (Python) %o A337227 from itertools import count %o A337227 def A337227(n): %o A337227 s1 = tuple(int(d) for d in str(n)) %o A337227 s2 = s1 %o A337227 for i, s in enumerate(int(d) for k in count(n+1) for d in str(k)): %o A337227 s2 = s2[1:]+(s,) %o A337227 if s2 == s1: %o A337227 return i+1 # _Chai Wah Wu_, Feb 18 2022 %Y A337227 Cf. A007376, A331162, A033307. %Y A337227 Cf. A342162. %K A337227 nonn,base,look %O A337227 0,1 %A A337227 _Scott R. Shannon_ and _N. J. A. Sloane_, Aug 19 2020