This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337229 #27 Apr 18 2022 12:30:43 %S A337229 14,8,56,24,88,104,16,156,204,48,208,460,88,328,760,116,24,498,1088, %T A337229 304,716,1608,492,24,894,2632,420,0,24,20,1282,3436,756,108,1730,4780, %U A337229 852,104,2156,6332,1348,136,2844,8236,1632,152,3594,10464,2388,148,4432,13632,2260,404 %N A337229 Irregular table read by rows: row n gives the number of 3-gon to k-gon contacts, with k>=3, for an n X 2 grid of congruent rectangles divided by drawing diagonals of all possible rectangles (cf. A335701). %C A337229 See A335701 for other images of the n X 2 grid of congruent rectangles. %H A337229 Scott R. Shannon, <a href="/A337229/a337229.png">Image for n=1 with edge-count coloring</a>. This is the first n-gon with 3-gon to 3-gon and 3-gon to 4-gon contacts. %H A337229 Scott R. Shannon, <a href="/A337229/a337229_1.png">Image for n=3 with edge-count coloring</a>. This is the first n-gon with 3-gon to 5-gon contacts. %H A337229 Scott R. Shannon, <a href="/A337229/a337229_2.png">Image for n=6 with edge-count coloring</a>. This is the first n-gon with 3-gon to 6-gon contacts. %H A337229 Scott R. Shannon, <a href="/A337229/a337229_3.png">Image for n=9 with edge-count coloring</a>. This is the first n-gon with 3-gon to 7-gon and 3-gon to 8-gon contacts. %e A337229 The table begins: %e A337229 . %e A337229 14, 8; %e A337229 56, 24; %e A337229 88, 104, 16; %e A337229 156, 204, 48; %e A337229 208, 460, 88; %e A337229 328, 760, 116, 24; %e A337229 498, 1088, 304; %e A337229 716, 1608, 492, 24; %e A337229 894, 2632, 420, 0, 24, 20; %e A337229 1282, 3436, 756, 108; %e A337229 1730, 4780, 852, 104; %e A337229 2156, 6332, 1348, 136; %e A337229 2844, 8236, 1632, 152; %e A337229 3594, 10464, 2388, 148; %e A337229 4432, 13632, 2260, 404; %e A337229 5530, 16604, 3354, 256; %e A337229 6812, 20700, 3668, 280; %Y A337229 Cf. A335701, A331454, A331766, A331763, A336731. %K A337229 nonn,tabf %O A337229 1,1 %A A337229 _Scott R. Shannon_, Aug 20 2020