This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337231 #25 Nov 23 2023 12:02:22 %S A337231 231,323,377,1443,1551,1891,2737,2849,3289,3689,3827,4181,4879,5777, %T A337231 6479,6601,6721,7743,8149,9879,10877,11663,13201,13981,15251,15301, %U A337231 17119,17261,17711,18407,19043,20999,23407,25877,27071,27323,29281,30889,34561,34943,35207 %N A337231 Odd composite integers m such that F(m)^2 == 1 (mod m), where F(m) is the m-th Fibonacci number. %C A337231 If p is a prime, then A000045(p)^2==1 (mod p). %C A337231 This sequence contains the odd composite integers for which the congruence holds. %C A337231 The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p)==1 (mod p) whenever p is prime and b=-1. %C A337231 For a=1, b=-1, U(n) recovers A000045(n) (Fibonacci numbers). %D A337231 D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020). %H A337231 Amiram Eldar, <a href="/A337231/b337231.txt">Table of n, a(n) for n = 1..1000</a> %H A337231 Dorin Andrica and Ovidiu Bagdasar, <a href="https://doi.org/10.3390/math9080838">On Generalized Lucas Pseudoprimality of Level k</a>, Mathematics (2021) Vol. 9, 838. %H A337231 D. Andrica and O. Bagdasar, <a href="https://repository.derby.ac.uk/item/92yqq/on-some-new-arithmetic-properties-of-the-generalized-lucas-sequences">On some new arithmetic properties of the generalized Lucas sequences</a>, preprint for Mediterr. J. Math. 18, 47 (2021). %t A337231 Select[Range[3, 30000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &] %o A337231 (PARI) lista(nn) = my(list=List()); forcomposite(c=1, nn, if ((c%2) && (Mod(fibonacci(c), c)^2 == 1), listput(list, c))); Vec(list); \\ _Michel Marcus_, Sep 29 2023 %Y A337231 Cf. A000045. %K A337231 nonn %O A337231 1,1 %A A337231 _Ovidiu Bagdasar_, Aug 20 2020