cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337246 Sum of the first coordinates of all pairs of prime divisors of n, (p,q), such that p <= q.

This page as a plain text file.
%I A337246 #15 Sep 18 2020 02:19:15
%S A337246 0,2,3,2,5,7,7,2,3,9,11,7,13,11,11,2,17,7,19,9,13,15,23,7,5,17,3,11,
%T A337246 29,17,31,2,17,21,17,7,37,23,19,9,41,19,43,15,11,27,47,7,7,9,23,17,53,
%U A337246 7,21,11,25,33,59,17,61,35,13,2,23,23,67,21,29,23,71,7,73,41,11,23,25,25,79
%N A337246 Sum of the first coordinates of all pairs of prime divisors of n, (p,q), such that p <= q.
%C A337246 a(n)=n if n is prime. - _Robert Israel_, Sep 17 2020
%H A337246 Robert Israel, <a href="/A337246/b337246.txt">Table of n, a(n) for n = 1..10000</a>
%F A337246 a(n) = Sum_{p|n, q|n, p and q prime, p<=q} p.
%e A337246 a(6) = 7; There are 2 prime divisors of 6: {2,3}. If we list all of the ordered pairs (p,q) with p<=q, we get (2,2), (2,3) and (3,3). The sum of the first coordinates from each pair is 2 + 2 + 3 = 7.
%e A337246 a(10) = 9; There are 2 prime divisors of 10: {2,5}. If we list all of the ordered pairs (p,q) with p<=q, we get (2,2), (2,5) and (5,5). The sum of the first coordinates from each pair is 2 + 2 + 5 = 9.
%p A337246 f:= proc(n) local F, i,j;
%p A337246   F:= sort(convert(numtheory:-factorset(n),list),`>`);
%p A337246   add(i*F[i],i=1..nops(F))
%p A337246 end proc:
%p A337246 map(f, [$1..100]); # _Robert Israel_, Sep 17 2020
%o A337246 (PARI) a(n) = my(vp = factor(n)[,1]~); sum(iq=1, #vp, sum(ip=1, iq, vp[ip])); \\ _Michel Marcus_, Aug 21 2020
%Y A337246 Cf. A064939, A337246.
%K A337246 nonn
%O A337246 1,2
%A A337246 _Wesley Ivan Hurt_, Aug 20 2020