A337247 a(n) = (Sum_{k=0..n-1} (-1)^k * (4k+1) * 160^(n-1-k) * C(2k,k) * Sum_{j=0..k} C(k,j) * C(k+2j,2j) * C(2j,j) * (-20)^(k-j)) / (n * C(2n,n)).
25, 809, 23020, 730325, 27867142, 1117643720, 42658771456, 1558395721085, 57260792702050, 2179584653311070, 84835851591609400, 3292250198848240760, 126379831667243976400, 4841030410501144484000, 186842197443136622824960, 7269291788529191112814925, 283472902036823148786161530
Offset: 2
Keywords
Examples
a(2) = (160 - (4 + 1)*C(2,1)*(-20 + C(3,2)*C(2,1)))/(2*C(4,2)) = 300/12 = 25.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..100
- Zhi-Wei Sun, Two curious series for 1/Pi, Question 369569 at MathOverflow, August 19-20, 2020.
- Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
- Zhi-Wei Sun, Some new series for 1/Pi motivated by congruences, arXiv:2009.04379 [math.NT], 2020.
Programs
-
Mathematica
a[n_]:=a[n]=Sum[(4k+1)(-1)^k*160^(n-1-k)*Binomial[2k,k]*Sum[Binomial[k,j]Binomial[k+2j,2j]Binomial[2j,j](-20)^(k-j),{j,0,k}],{k,0,n-1}]/(n*Binomial[2n,n]) Table[a[n],{n,2,18}]
Comments