This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337251 #37 Nov 13 2022 08:01:12 %S A337251 75,119,551,755,4501,4895,16371,56863,61091,74201,201797,336709, %T A337251 534793,596827,879397,1007541 %N A337251 Positive integers k such that k^2 = A^2+B^2+C^2 and A^3+B^3+C^3 = m^3, where gcd(A,B,C) = 1 and A, B, C, m are positive integers. %C A337251 From _Chai Wah Wu_, Sep 04 2020: (Start) %C A337251 A. Martin and R. Davis showed that 91091088729334859 = sqrt(11868013975030087^2+16269106368215226^2+88837226814909894^2) is a term (see Links). %C A337251 Table of values for k, A, B, C, m: %C A337251 k A B C m %C A337251 --------------------------------------------- %C A337251 75 14 23 70 71 %C A337251 119 3 34 114 115 %C A337251 551 18 349 426 493 %C A337251 755 145 198 714 721 %C A337251 4501 1016 2364 3693 4013 %C A337251 4895 213 3450 3466 4357 %C A337251 16371 3542 9286 13009 14497 %C A337251 56863 6213 32194 46458 51157 %C A337251 61091 29233 29574 44754 51985 %C A337251 74201 32913 38444 54264 63185 %C A337251 201797 106677 117252 124876 168373 %C A337251 336709 110051 118044 295512 306467 %C A337251 534793 116457 286752 436136 476393 %C A337251 596827 202023 234550 510270 536023 %C A337251 879397 43472 613560 628485 782597 %C A337251 1007541 272267 417416 875656 914315 %C A337251 (End) %H A337251 A. Martin and R. Davis, <a href="https://archive.org/details/bub_gb_UuFJAQAAIAAJ/page/n225/mode/2up">Solution of problem 143</a>, Jahrbuch über die Fortschritte der Mathematik, Band 29, Jahrgang 1898, pub. 1900, p. 157. %H A337251 Ed Pegg Jr.'s Math Puzzles, <a href="http://www.mathpuzzle.com/cbumpkin.txt">A^2 + B^2 + C^2 = Square, A^3 + B^3 + C^3 = Cube</a> %H A337251 Seiji Tomita, <a href="http://www.maroon.dti.ne.jp/fermat/dioph196e.html">A simultaneous equation {x^2+y^2+z^2=u^2, x^3+y^3+z^3=v^3} has infinitely many integer solutions</a>. %e A337251 56863 is in the sequence because 56863^2 = 6213^2 + 32194^2 + 46458^2, 6213^3 + 32194^3 + 46458^3 = 51157^3 and gcd(6213, 32194, 46458) = 1. %Y A337251 Cf. A096910. %K A337251 nonn,more %O A337251 1,1 %A A337251 _Mo Li_, Aug 21 2020