A337252 Digits of 2^n can be rearranged with no leading zeros to form t^2, for t not a power of 2.
8, 10, 12, 14, 20, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150
Offset: 1
Examples
Here are the squares corresponding to the first few powers of 2: 2^8, 25^2 2^10, 49^2 2^12, 98^2 2^14, 178^2 2^20, 1028^2 2^26, 8291^2 2^28, 19112^2 2^30, 33472^2 2^32, 51473^2 2^34, 105583^2 2^36, 129914^2 2^38, 640132^2 2^40, 1081319^2 2^42, 1007243^2 2^44, 3187271^2 2^46, 4058042^2 2^48, 10285408^2 2^50, 32039417^2 2^52, 44795066^2 2^54, 100241288^2 From _Robert Israel_, Aug 21 2020: (Start) 2^56, 142847044^2 2^58, 318068365^2 (End) From _Chai Wah Wu_, Aug 21 2020: (Start) 2^60, 1000562716^2 2^62, 1000709692^2 2^64, 3164169028^2 2^66, 4498215974^2 2^68, 10061077457^2 2^70, 31624545442^2 2^72, 34960642066^2 2^74, 100786105136^2 2^76, 105467328383^2 2^78, 316579648042^2 2^80, 1000556206526^2 2^82, 1001129296612^2 2^84, 3179799285956^2 2^86, 3333501503458^2 2^88, 10000006273742^2 2^90, 31624717039768^2 2^92, 31640399136637^2 2^94, 100001179435324^2 2^96, 100609261981363^2 2^98, 316227945405958^2 2^100, 1000000068136465^2 2^102, 1000000012839623^2 2^104, 3162279442052185^2 2^106, 3162295238497457^2 2^108, 10006109951303125^2 2^110, 31622778376826465^2 2^112, 31626290060004883^2 2^114, 100005555418898327^2 2^116, 100061093137010524^2 2^118, 316229698532373214^2 2^120, 1000000611139735223^2 2^122, 1005540208662183694^2 2^124, 3179814811220058566^2 2^126, 9994442844707576056^2 2^128, 31605185913938432804^2 2^130, 31799720491491676612^2 2^132, 99999944438762188450^2 2^134, 316052017518707374894^2 2^136, 100055595656929586657^2 2^138, 316227783779026656472^2 2^140, 3162277642424057210351^2 2^142, 1000056109592630240914^2 2^144, 3162279417006463372135^2 2^146, 3162279434557126331437^2 2^148, 10005559566228010636663^2 2^150, 99999999444438629490484^2 (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..71
Programs
-
Maple
filter:= proc(n) local L,X,S,t,s,x,b; b:= 2^(n/2); L:= sort(convert(2^n,base,10)); S:= map(t -> rhs(op(t)), [msolve(X^2=2^n,9)]); for t from floor(10^((nops(L)-1)/2)/9) to floor(10^(nops(L)/2)/9) do for s in S do x:= 9*t+s; if x = b then next fi; if sort(convert(x^2,base,10))=L then return true fi; od od; false end proc: select(filter, [seq(i,i=2..58,2)]); # Robert Israel, Aug 21 2020
-
Python
from math import isqrt def ok(n, verbose=True): s = str(2**n) L, target, hi = len(s), sorted(s), int("".join(sorted(s, reverse=True))) if '0' not in s: lo = int("".join(target)) else: lownzd, targetcopy = min(set(s) - {'0'}), target[:] targetcopy.remove(lownzd) rest = "".join(targetcopy) lo = int(lownzd + rest) for r in range(isqrt(lo), isqrt(hi)+1): rr = r*r if sorted(str(rr)) == target: brr = bin(rr)[2:] if brr != '1' + '0'*(len(brr)-1): if verbose: print(f"2^{n}, {r}^2") return r return 0 print(list(filter(ok, range(2, 73, 2)))) # Michael S. Branicky, Aug 10 2021
Extensions
56 and 58 added by Robert Israel, Aug 21 2020
a(23)-(68) from Chai Wah Wu, Aug 21 2020
Comments