This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337255 #11 Aug 25 2020 17:16:28 %S A337255 1,1,1,1,1,1,2,1,1,1,1,3,2,1,1,1,3,3,1,1,2,1,1,3,2,1,1,1,5,7,3,1,1,1, %T A337255 3,2,1,3,2,1,4,6,4,1,1,1,1,5,7,3,1,1,1,5,7,3,1,3,2,1,3,2,1,1,1,7,15, %U A337255 13,4,1,2,1,1,3,2,1,3,3,1,1,5,7,3,1,1,1 %N A337255 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n. %H A337255 Alois P. Heinz, <a href="/A337255/b337255.txt">Rows n = 1..5000, flattened</a> %e A337255 Sequence of rows begins: %e A337255 1: {1} 16: {1,4,6,4,1} %e A337255 2: {1,1} 17: {1,1} %e A337255 3: {1,1} 18: {1,5,7,3} %e A337255 4: {1,2,1} 19: {1,1} %e A337255 5: {1,1} 20: {1,5,7,3} %e A337255 6: {1,3,2} 21: {1,3,2} %e A337255 7: {1,1} 22: {1,3,2} %e A337255 8: {1,3,3,1} 23: {1,1} %e A337255 9: {1,2,1} 24: {1,7,15,13,4} %e A337255 10: {1,3,2} 25: {1,2,1} %e A337255 11: {1,1} 26: {1,3,2} %e A337255 12: {1,5,7,3} 27: {1,3,3,1} %e A337255 13: {1,1} 28: {1,5,7,3} %e A337255 14: {1,3,2} 29: {1,1} %e A337255 15: {1,3,2} 30: {1,7,12,6} %e A337255 Row n = 24 counts the following chains: %e A337255 24 24/1 24/2/1 24/4/2/1 24/8/4/2/1 %e A337255 24/2 24/3/1 24/6/2/1 24/12/4/2/1 %e A337255 24/3 24/4/1 24/6/3/1 24/12/6/2/1 %e A337255 24/4 24/4/2 24/8/2/1 24/12/6/3/1 %e A337255 24/6 24/6/1 24/8/4/1 %e A337255 24/8 24/6/2 24/8/4/2 %e A337255 24/12 24/6/3 24/12/2/1 %e A337255 24/8/1 24/12/3/1 %e A337255 24/8/2 24/12/4/1 %e A337255 24/8/4 24/12/4/2 %e A337255 24/12/1 24/12/6/1 %e A337255 24/12/2 24/12/6/2 %e A337255 24/12/3 24/12/6/3 %e A337255 24/12/4 %e A337255 24/12/6 %p A337255 b:= proc(n) option remember; expand(x*(1 + %p A337255 add(b(d), d=numtheory[divisors](n) minus {n}))) %p A337255 end: %p A337255 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): %p A337255 seq(T(n), n=1..50); # _Alois P. Heinz_, Aug 23 2020 %t A337255 chss[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chss[d],{d,Most[Divisors[n]]}],{n}]; %t A337255 Table[Length[Select[chss[n],Length[#]==k&]],{n,30},{k,1+PrimeOmega[n]}] %Y A337255 A008480 gives rows ends. %Y A337255 A067824 gives row sums. %Y A337255 A073093 gives row lengths. %Y A337255 A334996 appears to be the case of chains ending with 1. %Y A337255 A337071 is the sum of row n!. %Y A337255 A000005 counts divisors. %Y A337255 A001055 counts factorizations. %Y A337255 A001222 counts prime factors with multiplicity. %Y A337255 A067824 counts chains of divisors starting with n. %Y A337255 A074206 counts chains of divisors from n to 1. %Y A337255 A122651 counts chains of divisors summing to n. %Y A337255 A167865 counts chains of divisors > 1 summing to n. %Y A337255 A251683 counts chains of divisors from n to 1 by length. %Y A337255 A253249 counts nonempty chains of divisors. %Y A337255 A337070 counts chains of divisors starting with A006939(n). %Y A337255 A337256 counts chains of divisors. %Y A337255 Cf. A001221, A002033, A124010, A124433, A337074, A337105, A337107. %K A337255 nonn,tabf %O A337255 1,7 %A A337255 _Gus Wiseman_, Aug 23 2020