cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337255 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n.

This page as a plain text file.
%I A337255 #11 Aug 25 2020 17:16:28
%S A337255 1,1,1,1,1,1,2,1,1,1,1,3,2,1,1,1,3,3,1,1,2,1,1,3,2,1,1,1,5,7,3,1,1,1,
%T A337255 3,2,1,3,2,1,4,6,4,1,1,1,1,5,7,3,1,1,1,5,7,3,1,3,2,1,3,2,1,1,1,7,15,
%U A337255 13,4,1,2,1,1,3,2,1,3,3,1,1,5,7,3,1,1,1
%N A337255 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n.
%H A337255 Alois P. Heinz, <a href="/A337255/b337255.txt">Rows n = 1..5000, flattened</a>
%e A337255 Sequence of rows begins:
%e A337255      1: {1}           16: {1,4,6,4,1}
%e A337255      2: {1,1}         17: {1,1}
%e A337255      3: {1,1}         18: {1,5,7,3}
%e A337255      4: {1,2,1}       19: {1,1}
%e A337255      5: {1,1}         20: {1,5,7,3}
%e A337255      6: {1,3,2}       21: {1,3,2}
%e A337255      7: {1,1}         22: {1,3,2}
%e A337255      8: {1,3,3,1}     23: {1,1}
%e A337255      9: {1,2,1}       24: {1,7,15,13,4}
%e A337255     10: {1,3,2}       25: {1,2,1}
%e A337255     11: {1,1}         26: {1,3,2}
%e A337255     12: {1,5,7,3}     27: {1,3,3,1}
%e A337255     13: {1,1}         28: {1,5,7,3}
%e A337255     14: {1,3,2}       29: {1,1}
%e A337255     15: {1,3,2}       30: {1,7,12,6}
%e A337255 Row n = 24 counts the following chains:
%e A337255   24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
%e A337255       24/2   24/3/1   24/6/2/1   24/12/4/2/1
%e A337255       24/3   24/4/1   24/6/3/1   24/12/6/2/1
%e A337255       24/4   24/4/2   24/8/2/1   24/12/6/3/1
%e A337255       24/6   24/6/1   24/8/4/1
%e A337255       24/8   24/6/2   24/8/4/2
%e A337255       24/12  24/6/3   24/12/2/1
%e A337255              24/8/1   24/12/3/1
%e A337255              24/8/2   24/12/4/1
%e A337255              24/8/4   24/12/4/2
%e A337255              24/12/1  24/12/6/1
%e A337255              24/12/2  24/12/6/2
%e A337255              24/12/3  24/12/6/3
%e A337255              24/12/4
%e A337255              24/12/6
%p A337255 b:= proc(n) option remember; expand(x*(1 +
%p A337255       add(b(d), d=numtheory[divisors](n) minus {n})))
%p A337255     end:
%p A337255 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
%p A337255 seq(T(n), n=1..50);  # _Alois P. Heinz_, Aug 23 2020
%t A337255 chss[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chss[d],{d,Most[Divisors[n]]}],{n}];
%t A337255 Table[Length[Select[chss[n],Length[#]==k&]],{n,30},{k,1+PrimeOmega[n]}]
%Y A337255 A008480 gives rows ends.
%Y A337255 A067824 gives row sums.
%Y A337255 A073093 gives row lengths.
%Y A337255 A334996 appears to be the case of chains ending with 1.
%Y A337255 A337071 is the sum of row n!.
%Y A337255 A000005 counts divisors.
%Y A337255 A001055 counts factorizations.
%Y A337255 A001222 counts prime factors with multiplicity.
%Y A337255 A067824 counts chains of divisors starting with n.
%Y A337255 A074206 counts chains of divisors from n to 1.
%Y A337255 A122651 counts chains of divisors summing to n.
%Y A337255 A167865 counts chains of divisors > 1 summing to n.
%Y A337255 A251683 counts chains of divisors from n to 1 by length.
%Y A337255 A253249 counts nonempty chains of divisors.
%Y A337255 A337070 counts chains of divisors starting with A006939(n).
%Y A337255 A337256 counts chains of divisors.
%Y A337255 Cf. A001221, A002033, A124010, A124433, A337074, A337105, A337107.
%K A337255 nonn,tabf
%O A337255 1,7
%A A337255 _Gus Wiseman_, Aug 23 2020