This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337256 #7 Aug 24 2020 01:03:21 %S A337256 2,4,4,8,4,12,4,16,8,12,4,32,4,12,12,32,4,32,4,32,12,12,4,80,8,12,16, %T A337256 32,4,52,4,64,12,12,12,104,4,12,12,80,4,52,4,32,32,12,4,192,8,32,12, %U A337256 32,4,80,12,80,12,12,4,176,4,12,32,128,12,52,4,32,12,52 %N A337256 Number of strict chains of divisors of n. %F A337256 a(n) = A253249(n) + 1. %e A337256 The a(n) chains for n = 1, 2, 4, 6, 8 (empty chains shown as 0): %e A337256 0 0 0 0 0 %e A337256 1 1 1 1 1 %e A337256 2 2 2 2 %e A337256 2/1 4 3 4 %e A337256 2/1 6 8 %e A337256 4/1 2/1 2/1 %e A337256 4/2 3/1 4/1 %e A337256 4/2/1 6/1 4/2 %e A337256 6/2 8/1 %e A337256 6/3 8/2 %e A337256 6/2/1 8/4 %e A337256 6/3/1 4/2/1 %e A337256 8/2/1 %e A337256 8/4/1 %e A337256 8/4/2 %e A337256 8/4/2/1 %t A337256 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A337256 Table[Length[stableSets[Divisors[n],!(Divisible[#1,#2]||Divisible[#2,#1])&]],{n,10}] %Y A337256 A067824 is the case of chains starting with n (or ending with 1). %Y A337256 A074206 is the case of chains from n to 1. %Y A337256 A253249 is the nonempty case. %Y A337256 A000005 counts divisors. %Y A337256 A001055 counts factorizations. %Y A337256 A001222 counts prime factors with multiplicity. %Y A337256 A074206 counts chains of divisors from n to 1. %Y A337256 A122651 counts chains of divisors summing to n. %Y A337256 A167865 counts chains of divisors > 1 summing to n. %Y A337256 A334996 appears to count chains of divisors from n to 1 by length. %Y A337256 A337070 counts chains of divisors starting with A006939(n). %Y A337256 A337071 counts chains of divisors starting with n!. %Y A337256 A337255 counts chains of divisors starting with n by length. %Y A337256 Cf. A001221, A002033, A008480, A124010, A251683, A337105, A337107. %K A337256 nonn %O A337256 1,1 %A A337256 _Gus Wiseman_, Aug 23 2020