cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337295 Reversible binary Smith numbers: binary Smith numbers (A278909) whose binary reversal (A030101) is also a binary Smith number.

Original entry on oeis.org

15, 51, 85, 159, 190, 249, 303, 471, 489, 639, 679, 763, 765, 771, 799, 843, 893, 917, 951, 995, 1010, 1017, 1023, 1167, 1203, 1285, 1467, 1501, 1615, 1630, 1641, 1707, 1742, 1773, 1788, 1929, 1939, 1970, 2015, 2167, 2319, 2367, 2493, 2787, 2931, 2975, 3033, 3055
Offset: 1

Views

Author

Amiram Eldar, Aug 21 2020

Keywords

Examples

			159 is a binary Smith number: 159 = 3 * 53 is in binary representation 10011111 = 11 * 110101, and (1 + 0 + 0 + 1 + 1 + 1 + 1 + 1) = (1 + 1) + (1 + 1 + 0 + 1 + 0 + 1) = 6. The binary reversal of 159 = 10011111_2 is 249 = 11111001_2 which is also a binary Smith number: 249 = 3 * 83 is in binary representation 11111001 = 11 * 1010011, and (1 + 1 + 1 + 1 + 1 + 0 + 0 + 1) = (1 + 1) + (1 + 0 + 1 + 0 + 0 + 1 + 1) = 6. Therefore, 159 is a term.
		

Crossrefs

The binary version of A104171.
Subsequence of A278909.
A334530 is a subsequence.
Cf. A030101.

Programs

  • Mathematica
    binSmithQ[n_] := CompositeQ[n] && Plus @@ (Last @#* DigitCount[First@#, 2, 1] & /@ FactorInteger[n]) == DigitCount[n, 2, 1]; rev[n_] := FromDigits[Reverse @ IntegerDigits[n, 2], 2]; Select[Range[3000], binSmithQ[#] && binSmithQ[rev[#]] &]