This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337298 #9 Aug 22 2020 12:50:34 %S A337298 2,5,6,10,8,21,10,19,16,29,14,46,16,37,36,36,20,61,22,64,46,53,26,91, %T A337298 34,61,44,82,32,141,34,69,66,77,64,136,40,85,76,127,44,181,46,118,106, %U A337298 101,50,176,60,133,96,136,56,173,92,163,106,125,62,316,64,133,136,134,106,261,70 %N A337298 Sum of the coordinates of all relatively prime pairs of divisors of n, (d1,d2), such that d1 <= d2. %F A337298 a(n) = Sum_{i|n, k|n, i<=k, gcd(i,k)=1} (i+k). %e A337298 a(4) = 10; There are 3 divisors of 4: {1,2,4}. If we list the relatively prime pairs (d1,d2), where d1 <= d2, we get (1,1), (1,2), (1,4). The sum of the coordinates from all pairs is 1+1+1+2+1+4 = 10. %e A337298 a(5) = 8; There are 2 divisors of 5: {1,5}. The relatively prime pairs (d1,d2), where d1 <= d2 are: (1,1) and (1,5). The sum of the coordinates is then 1+1+1+5 = 8. %t A337298 Table[Sum[Sum[(i + k) KroneckerDelta[GCD[i, k], 1] (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}] %o A337298 (PARI) a(n) = my(d = divisors(n)); sum(i=1, #d, sum(j=1, i, if (gcd(d[i],d[j])==1, d[i]+d[j]))); \\ _Michel Marcus_, Aug 22 2020 %Y A337298 Cf. A018892, A337246. %K A337298 nonn,easy %O A337298 1,1 %A A337298 _Wesley Ivan Hurt_, Aug 21 2020