cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337298 Sum of the coordinates of all relatively prime pairs of divisors of n, (d1,d2), such that d1 <= d2.

This page as a plain text file.
%I A337298 #9 Aug 22 2020 12:50:34
%S A337298 2,5,6,10,8,21,10,19,16,29,14,46,16,37,36,36,20,61,22,64,46,53,26,91,
%T A337298 34,61,44,82,32,141,34,69,66,77,64,136,40,85,76,127,44,181,46,118,106,
%U A337298 101,50,176,60,133,96,136,56,173,92,163,106,125,62,316,64,133,136,134,106,261,70
%N A337298 Sum of the coordinates of all relatively prime pairs of divisors of n, (d1,d2), such that d1 <= d2.
%F A337298 a(n) = Sum_{i|n, k|n, i<=k, gcd(i,k)=1} (i+k).
%e A337298 a(4) = 10; There are 3 divisors of 4: {1,2,4}. If we list the relatively prime pairs (d1,d2), where d1 <= d2, we get (1,1), (1,2), (1,4). The sum of the coordinates from all pairs is 1+1+1+2+1+4 = 10.
%e A337298 a(5) = 8; There are 2 divisors of 5: {1,5}. The relatively prime pairs (d1,d2), where d1 <= d2 are: (1,1) and (1,5). The sum of the coordinates is then 1+1+1+5 = 8.
%t A337298 Table[Sum[Sum[(i + k) KroneckerDelta[GCD[i, k], 1] (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
%o A337298 (PARI) a(n) = my(d = divisors(n)); sum(i=1, #d, sum(j=1, i, if (gcd(d[i],d[j])==1, d[i]+d[j])));  \\ _Michel Marcus_, Aug 22 2020
%Y A337298 Cf. A018892, A337246.
%K A337298 nonn,easy
%O A337298 1,1
%A A337298 _Wesley Ivan Hurt_, Aug 21 2020