This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337301 #48 Oct 21 2020 23:21:36 %S A337301 1,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,3,3,3,3,2,2,3,3,3,3,3,2,2,3,3,4,4,3, %T A337301 3,2,2,3,3,4,4,4,3,3,2,2,3,3,4,4,4,4,3,3,2,2,3,4,4,4,4,4,4,4,3,2,2,3, %U A337301 4,4,5,5,5,5,4,4,3,2,2,3,4,4,5,5,5,5,5,4,4,3,2 %N A337301 Triangle read by rows in which row n lists the closest integers to diagonal lengths of regular n-gon with unit edge length, n >= 4. %F A337301 T(n,k) = round(sin((k+1)*Pi/n)/sin(Pi/n)), n >= 4, 1 <= k <= n-3. %e A337301 Triangle begins: %e A337301 1; %e A337301 2, 2; %e A337301 2, 2, 2; %e A337301 2, 2, 2, 2; %e A337301 2, 2, 3, 2, 2; %e A337301 2, 3, 3, 3, 3, 2; %e A337301 2, 3, 3, 3, 3, 3, 2; %e A337301 2, 3, 3, 4, 4, 3, 3, 2; %e A337301 2, 3, 3, 4, 4, 4, 3, 3, 2; %e A337301 2, 3, 3, 4, 4, 4, 4, 3, 3, 2; %e A337301 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2; %e A337301 2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2; %e A337301 2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2; %e A337301 ... %e A337301 Row n lists the closest integers to the length of the diagonals drawn from a fixed vertex of a regular n-gon with unit edge length, n >= 4. %e A337301 The lengths of the diagonals drawn from vertex A of a regular 8-gon ABCDEFGH with unit edge length are: %e A337301 AC = 1.84775... %e A337301 AD = 2.41421... %e A337301 AE = 2.61312... %e A337301 AF = 2.41421... %e A337301 AG = 1.84775... %e A337301 So the row for n=8 is 2, 2, 3, 2, 2. %t A337301 T[n_,k_]:=Round[Sin[(k+1)*Pi/n]/Sin[Pi/n]]; Flatten[Table[T[n,k],{n,4,16},{k,1,n-3}]] (* _Stefano Spezia_, Sep 07 2020 *) %Y A337301 Cf. A064313. %Y A337301 Decimal expansion of diagonal lengths of regular n-gons with unit edge length: %Y A337301 n=4 A002193. %Y A337301 n=5 A001622. %Y A337301 n=6 A002194, A000038. %Y A337301 n=7 A160389, A231187. %Y A337301 n=8 A179260, A014176, A121601. %Y A337301 n=9 A332437. %Y A337301 n=10 A188593, A104457, A019970, A134945. %Y A337301 n=11 A231186. %Y A337301 n=12 A188887, A090388, A337402, A019973, A214726. %K A337301 easy,nonn,tabl %O A337301 4,2 %A A337301 _Mohammed Yaseen_, Aug 22 2020