cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337323 a(n) = gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

This page as a plain text file.
%I A337323 #29 Sep 08 2022 08:46:25
%S A337323 1,1,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,3,1,2,1,2,1,4,1,2,1,2,1,2,1,1,1,2,
%T A337323 1,1,1,2,1,2,1,2,1,2,3,2,1,2,1,1,1,2,1,2,1,8,1,2,1,12,1,2,1,1,1,2,1,2,
%U A337323 1,2,1,3,1,2,1,2,1,2,1,2,1,2,1,4,1,2,1
%N A337323 a(n) = gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
%C A337323 GCD(n, tau(n), sigma(n), pod(n)) = GCD(n, tau(n), sigma(n)). - _David A. Corneth_, Aug 24 2020
%H A337323 Robert Israel, <a href="/A337323/b337323.txt">Table of n, a(n) for n = 1..10000</a>
%F A337323 a(p) = 1 for p = primes (A000040).
%F A337323 a(n) = 1 for n = p^k, p prime, k >= 0 (A000961). - _Bernard Schott_, Apr 01 2021
%e A337323 a(6) = gcd(6, tau(6), sigma(6), pod(6)) = gcd(6, 4, 12, 36) = 2.
%p A337323 f:= proc(n) uses numtheory; igcd(n, tau(n), sigma(n)) end proc:
%p A337323 map(f, [$1..100]); # _Robert Israel_, Sep 01 2020
%t A337323 a[n_] := GCD @@ {n, DivisorSigma[0, n], DivisorSigma[1, n]}; Array[a, 100] (* _Amiram Eldar_, Aug 24 2020 *)
%o A337323 (Magma) [GCD([n, #Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
%o A337323 (PARI) a(n) = my(f=factor(n)); gcd([n, sigma(f), numdiv(f)]); \\ _Michel Marcus_, Apr 01 2021
%Y A337323 Cf. A336722 (gcd(tau(n), sigma(n), pod(n))).
%Y A337323 Cf. A337324 (least m such that gcd(m, tau(m), sigma(m), pod(m)) = n).
%Y A337323 Cf. A336723 (lcm(tau(n), sigma(n), pod(n))) = (lcm(n, tau(n), sigma(n), pod(n))).
%Y A337323 Cf. A000005, A000203, A007955.
%K A337323 nonn,easy
%O A337323 1,6
%A A337323 _Jaroslav Krizek_, Aug 23 2020