This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337324 #33 Sep 08 2022 08:46:25 %S A337324 1,6,18,24,5000,90,66339,56,288,3240,10036224,60,582160384,20412, %T A337324 16200,3968,49030215219,612,4637065216,1520,142884,912384, %U A337324 98881718827959,480,7543125,479232,3175200,5824,26559758051835904,76950,25796647321600,2688,491774976,1268973568 %N A337324 a(n) is the smallest number m such that gcd(m, tau(m), sigma(m), pod(m)) = n where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955). %C A337324 From _David A. Corneth_, Aug 24 2020: (Start) %C A337324 a(35) <= 1289027059712000000. %C A337324 a(36) <= 136064563937280. %C A337324 a(37) = 207816012706349056. %C A337324 a(38) <= 1835772101525504. %C A337324 a(39) <= 418089296461824. %C A337324 a(40) <= 11698803719536640. %C A337324 gcd(m, tau(m), sigma(m), pod(m)) = gcd(m, tau(m), sigma(m)) which may ease the search. %C A337324 (End) %e A337324 For n = 6; a(6) = 90 because 90 is the smallest number with gcd(90, tau(90), sigma(90), pod(90)) = gcd(90, 12, 234, 531441000000) = 6. %o A337324 (Magma) [Min([m: m in[1..10^5] | GCD([m, #Divisors(m), &+Divisors(m), &*Divisors(m)]) eq k]): k in [1..10]] %o A337324 (PARI) a(n) = {for(i = 1, oo, f = factor(i); if(gcd([i, numdiv(f), sigma(f)]) == n, return(i)))} \\ _David A. Corneth_, Aug 24 2020 %Y A337324 Cf. A337323 (gcd(n, tau(n), sigma(n), pod(n))). %Y A337324 Cf. A337325 (least m such that gcd(tau(m), sigma(m), pod(m)) = n). %Y A337324 Cf. A000005, A000203, A007955. %K A337324 nonn %O A337324 1,2 %A A337324 _Jaroslav Krizek_, Aug 23 2020 %E A337324 a(11) from _Amiram Eldar_, Aug 24 2020 %E A337324 More terms from _Jaroslav Krizek_ and _David A. Corneth_, Aug 24 2020