This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337334 #18 Mar 11 2023 07:55:30 %S A337334 1,1,2,3,4,5,7,9,11,14,16,21,24,30,35,42,48,58,67,78,91,103,121,138, %T A337334 158,181,205,233,266,298,337,378,429,480,539,602,674,751,838,930,1031, %U A337334 1147,1274,1402,1556,1715,1896,2090,2296,2527,2777,3047,3340,3669,4016 %N A337334 a(n) = pi(b(n)), where pi is the prime counting function (A000720) and b(n) = a(n-1) + b(n-1) with a(0) = b(0) = 1. %C A337334 It can be proved that this is an increasing sequence from the theorem of Lu and Deng (see LINKS), which states "the prime gap of a prime number is less than or equal to the prime count of the prime number”, or prime(n+1) - prime(n) <= pi(prime(n)). %H A337334 Ya-Ping Lu and Shu-Fang Deng, <a href="https://arxiv.org/abs/2007.15282">An upper bound for the prime gap</a>, arXiv:2007.15282 [math.GM], 2020. %F A337334 a(n) = pi(b(n)), where b(n) = a(n-1) + b(n-1) with a(0) = b(0) = 1. %F A337334 a(n) = A000720(A061535(n)), n>=1. - _R. J. Mathar_, Jun 18 2021 %e A337334 a(1) = pi(b(1)) = pi(a(0) + b(0)) = pi(1 + 1) = pi(2) = 1 %e A337334 a(2) = pi(b(2)) = pi(a(1) + b(1)) = pi(1 + 2) = pi(3) = 2 %e A337334 a(3) = pi(b(3)) = pi(a(2) + b(2)) = pi(2 + 3) = pi(5) = 3 %e A337334 a(4) = pi(b(4)) = pi(a(3) + b(3)) = pi(3 + 5) = pi(8) = 4 %e A337334 a(54)= pi(b(54))= pi(a(53)+ b(53))= pi(3669+34327)=pi(37996)=4016 %p A337334 A337334 := proc(n) %p A337334 option remember; %p A337334 if n = 0 then %p A337334 1; %p A337334 else %p A337334 numtheory[pi](A061535(n)) ; %p A337334 end if; %p A337334 end proc: %p A337334 seq(A337334(n),n=0..20) ; # _R. J. Mathar_, Jun 18 2021 %o A337334 (Python) %o A337334 from sympy import primepi %o A337334 a_last = 1 %o A337334 b_last = 1 %o A337334 for n in range(1, 1001): %o A337334 b = a_last + b_last %o A337334 a = primepi(b) %o A337334 print(a) %o A337334 a_last = a %o A337334 b_last = b %Y A337334 Cf. A000720 (pi), A014688 (prime(n)+n), A332086. %K A337334 nonn %O A337334 0,3 %A A337334 _Ya-Ping Lu_, Aug 23 2020 %E A337334 a(0) inserted by _R. J. Mathar_, Jun 18 2021