This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337365 #37 Jan 15 2021 21:18:50 %S A337365 0,0,0,0,0,4,4,3,8,2,6,9,3,1,2,5,0,6,9,5,3 %N A337365 Decimal expansion of imaginary part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function and i=sqrt(-1). %C A337365 For the decimal expansion of the real part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function see A337404. %C A337365 Sum_{m>=1} 1/(1/2 + i*z(m))^1 = 0.01154785448306... - i*A where 0.01154785448306 = A074760/2 and A > 10.5. %C A337365 Sum_{m>=1} 1/(1/2 + i*z(m))^2 = -0.0230771586479... - i*0.000728434... where -0.0230771586479 = A245275/2 %C A337365 Sum_{m>=1} 1/(1/2 + i*z(m))^3 = -0.000055579115726... + i*0.0007262105... where -0.000055579115726 = A245276/2 %C A337365 Sum_{m>=1} 1/(1/2 + i*z(m))^4 = 0.0000368136106308... + i*0.0000044382... %C A337365 Sum_{m>=1} 1/z(m) is a divergent series; see A332614. %C A337365 Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645. %C A337365 Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360. %C A337365 Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815. %C A337365 Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814. %C A337365 Sum_{m>=1} 1/z(m)^6 = 0.0000001441739314...; see A335826. %C A337365 Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760. %C A337365 Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275. %C A337365 Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276 %H A337365 See A332645. %F A337365 No explicit formula is known. %e A337365 0.000004438269312506953 %t A337365 (* 7-day-long procedure *) %t A337365 kk = 0; Do[kk = kk + 1/(N[ZetaZero[n], 100])^4 , {n, 1, 1000000}]; Take[Join[{0, 0, 0, 0, 0}, RealDigits[Im[kk]][[1]]], 11] %Y A337365 Cf. A013629, A074760, A104539, A104540, A104541, A104542, A245275, A245276, A306339, A306340, A306341, A332645, A333360, A335814, A335815, A335826. %K A337365 nonn,cons,more %O A337365 0,6 %A A337365 _Artur Jasinski_, Aug 26 2020