This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337384 #6 Aug 31 2020 19:52:24 %S A337384 6,14,15,35,286,470,715,874,969,2001,2185,2261,3021,4669,7049,10509, %T A337384 24521,30362,34694,34918,46189,54610,58102,58179,62698,65570,69513, %U A337384 73628,75905,79431,82510,86735,87295,94658,95381,108862,109810,120524,133023,135751,144001,145255,147572,156745,162197,185339,192062,216717 %N A337384 Numbers k for which A003973(k) is equal to 2*sigma(k). %H A337384 Antti Karttunen, <a href="/A337384/b337384.txt">Table of n, a(n) for n = 1..600</a> %H A337384 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A337384 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %t A337384 Select[Range[250000], If[# == 1, 1, DivisorSigma[1, Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Prime[PrimePi@ p + 1]^e] ]] == 2 DivisorSigma[1, #] &] (* _Michael De Vlieger_, Aug 27 2020 *) %o A337384 (PARI) %o A337384 A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; %o A337384 isA337384(n) = (A003973(n)==2*sigma(n)); %Y A337384 Cf. A000203, A003961, A003973. %Y A337384 Subsequence of A337381. %K A337384 nonn %O A337384 1,1 %A A337384 _Antti Karttunen_, Aug 27 2020