This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337389 #40 May 05 2022 08:08:21 %S A337389 1,1,2,1,3,6,1,4,19,20,1,5,34,141,70,1,6,51,328,1107,252,1,7,70,587, %T A337389 3334,8953,924,1,8,91,924,7123,34904,73789,3432,1,9,114,1345,12870, %U A337389 89055,372436,616227,12870,1,10,139,1856,20995,184756,1135005,4027216,5196627,48620 %N A337389 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt((1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) / (2 * (1-2*(k+4)*x+((k-4)*x)^2))). %H A337389 Seiichi Manyama, <a href="/A337389/b337389.txt">Antidiagonals n = 0..139, flattened</a> %F A337389 T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(2*j,j) * binomial(2*n,2*j). %F A337389 T(0,k) = 1, T(1,k) = k+2 and n * (2*n-1) * (4*n-5) * T(n,k) = (4*n-3) * (4*(k+4)*n^2-6*(k+4)*n+k+6) * T(n-1,k) - (k-4)^2 * (n-1) * (2*n-3) * (4*n-1) * T(n-2,k) for n > 1. - _Seiichi Manyama_, Aug 28 2020 %F A337389 For fixed k > 0, T(n,k) ~ (2 + sqrt(k))^(2*n + 1/2) / sqrt(8*Pi*n). - _Vaclav Kotesovec_, Aug 31 2020 %F A337389 Conjecture: the k-th column entries, k >= 0, are given by [x^n] ( (1 + (k-2)*x + x^2)*(1 + x)^2/(1 - x)^2 )^n. This is true for k = 0 and k = 4. - _Peter Bala_, May 03 2022 %e A337389 Square array begins: %e A337389 1, 1, 1, 1, 1, 1, ... %e A337389 2, 3, 4, 5, 6, 7, ... %e A337389 6, 19, 34, 51, 70, 91, ... %e A337389 20, 141, 328, 587, 924, 1345, ... %e A337389 70, 1107, 3334, 7123, 12870, 20995, ... %e A337389 252, 8953, 34904, 89055, 184756, 337877, ... %t A337389 T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Aug 25 2020 *) %o A337389 (PARI) {T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n, 2*j))} %Y A337389 Columns k=0..5 give A000984, A082758, A337390, A245926, A001448, A243946. %Y A337389 Main diagonal gives A337388. %Y A337389 Cf. A337369, A337419. %K A337389 nonn,tabl %O A337389 0,3 %A A337389 _Seiichi Manyama_, Aug 25 2020