This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337402 #48 Jun 24 2024 11:28:57 %S A337402 3,3,4,6,0,6,5,2,1,4,9,5,1,2,3,1,6,2,2,3,0,1,1,7,5,1,2,3,6,6,7,4,9,2, %T A337402 8,1,3,8,3,7,4,8,1,5,5,3,3,9,3,7,5,7,1,7,3,9,8,1,3,6,5,8,9,0,6,1,1,5, %U A337402 7,8,9,0,6,4,2,1,8,1,8,0,7,1,5,4,5,5,1 %N A337402 Decimal expansion of the length of third shortest diagonal in a regular 12-gon with unit edge length. %C A337402 The distinct diagonal lengths in a regular 12-gon ABC...JKL with unit edge length are %C A337402 AC = sqrt(2 + sqrt(3)) = sqrt(2)/(-1+sqrt(3)) = A188887 %C A337402 AD = sqrt(4 + 2*sqrt(3)) = 2 /(-1+sqrt(3)) = A090388 %C A337402 AE = sqrt(6 + 3*sqrt(3)) = sqrt(6)/(-1+sqrt(3)) %C A337402 AF = sqrt(7 + 4*sqrt(3)) = (1+sqrt(3))/(-1+sqrt(3)) = A019973 %C A337402 AG = sqrt(8 + 4*sqrt(3)) = 2*sqrt(2)/(-1+sqrt(3)) = A214726 %H A337402 Paolo Xausa, <a href="/A337402/b337402.txt">Table of n, a(n) for n = 1..10000</a> %H A337402 N. J. A. Sloane and Gavin A. Theobald, <a href="https://arxiv.org/abs/2309.14866">On Dissecting Polygons into Rectangles</a>, arXiv:2309.14866 [math.CO], 2023. See Eq. (2.3). %H A337402 I. J. Zucker, G. S. Joyce, <a href="https://doi.org/10.1017/S0305004101005254">Special values of the hypergeometric series II</a>, Math. Proc. Cam. Phil. Soc. 131 (2001) 309 eq (8.9) %F A337402 Equals sin(Pi/3)/sin(Pi/12) = sqrt(2) + 2*cos(Pi/12) = sqrt(3*cot(Pi/12)). %F A337402 Equals sqrt(6 + 3*sqrt(3)) = sqrt(6)/(-1+sqrt(3)) = (3+sqrt(3))/sqrt(2). %F A337402 Equals 3*A145439. %F A337402 Equals Gamma(1/24)*Gamma(11/24)/(Gamma(5/24)*Gamma(7/24)) [Zucker] - _R. J. Mathar_, Jun 24 2024 %e A337402 3.34606521495123162230117512366749281383748155339375... %t A337402 First[RealDigits[Sqrt[6+3Sqrt[3]],10,100]] (* _Paolo Xausa_, Oct 19 2023 *) %o A337402 (PARI) sqrt(6 + 3*sqrt(3)) \\ _Michel Marcus_, Aug 26 2020 %Y A337402 Cf. A337301, A188887, A090388, A019973, A214726, A145439. %K A337402 nonn,cons %O A337402 1,1 %A A337402 _Mohammed Yaseen_, Aug 26 2020