This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337406 #15 Jul 11 2025 18:39:16 %S A337406 0,74,10704,345640,5062600,45246810,288005144,1430618784,5881281480, %T A337406 20827126650,65370603320,185725346664,485325996064,1181031257770, %U A337406 2702889008400,5863794289280,12137528310384,24099966466794 %N A337406 Number of chiral pairs of colorings of the edges of a cube (or regular octahedron) using n or fewer colors. %C A337406 Each member of a chiral pair is a reflection, but not a rotation, of the other. Both the cube and the octahedron have 12 edges. %H A337406 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1). %F A337406 a(n) = (n-1) * n^2 * (n+1) * (n^8 + n^6 - 2n^4 + 8) / 48. %F A337406 a(n) = 74*C(n,2) + 10482*C(n,3) + 303268*C(n,4) + 3440700*C(n,5) + 19842840*C(n,6) + 65867760*C(n,7) + 133580160*C(n,8) + 168399000*C(n,9) + 128898000*C(n,10) + 54885600*C(n,11) + 9979200*C(n,12), where the coefficient of C(n,k) is the number of colorings using exactly k colors. %F A337406 a(n) = (A060530(n) - A331351(n)) / 2 = A060530(n) - A199406(n) = A199406(n) - A331351(n). %F A337406 G.f.: 2 * (37*x^2 + 4871*x^3 + 106130*x^4 + 691514*x^5 + 1692248*x^6 + 1692248*x^7 + 691514*x^8 + 106130*x^9 + 4871*x^10 + 37*x^11) / (1-x)^13. %t A337406 Table[(n-1)n^2(n+1)(n^8+n^6-2n^4+8)/48, {n,20}] %t A337406 LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,74,10704,345640,5062600,45246810,288005144,1430618784,5881281480,20827126650,65370603320,185725346664,485325996064},20] (* _Harvey P. Dale_, Jul 11 2025 *) %Y A337406 Cf. A060530 (oriented), A199406 (unoriented), A331351 (achiral). %Y A337406 Row 3 of A337409 (orthotope edge colorings) and A337413 (orthoplex edge colorings). %K A337406 nonn,easy %O A337406 1,2 %A A337406 _Robert A. Russell_, Aug 26 2020