A337418 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the removed edges are not incident to the same vertex in the 3 point part but are incident to the same vertex in the other part.
32, 290, 2240, 16322, 116192, 819170, 5751680, 40314242, 282357152, 1976972450, 13840224320, 96885821762, 678213506912, 4747532812130, 33232844476160, 232630255706882, 1628412823069472, 11398892860850210, 79792259324043200, 558545843162577602
Offset: 3
Links
- Paolo Xausa, Table of n, a(n) for n = 3..1000
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (11,-31,21).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
Programs
-
Maple
a:= proc(n) 7^(n-1)-2*3^(n-1)+1 end proc: seq(a(n), n=3..20);
-
Mathematica
A337418[n_] := 7^(n-1) - 2*3^(n-1) + 1; Array[A337418,25,3] (* Paolo Xausa, Jul 22 2024 *)
-
PARI
Vec(2*x^3*(16 - 31*x + 21*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)) + O(x^25)) \\ Colin Barker, Nov 20 2020
Formula
a(n) = 7^(n-1)-2*3^(n-1)+1.
From Colin Barker, Nov 20 2020: (Start)
G.f.: 2*x^3*(16 - 31*x + 21*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)).
a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) for n>5. (End)
Comments