This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337450 #34 Feb 02 2021 19:07:33 %S A337450 0,0,0,0,0,2,0,7,5,17,17,54,51,143,168,358,482,986,1313,2583,3663, %T A337450 6698,9921,17710,26489,46352,70928,121137,188220,317810,497322,832039, %U A337450 1313501,2177282,3459041,5702808,9094377,14930351,23895672,39084070,62721578 %N A337450 Number of relatively prime compositions of n with no 1's. %C A337450 A composition of n is a finite sequence of positive integers summing to n. %H A337450 Alois P. Heinz, <a href="/A337450/b337450.txt">Table of n, a(n) for n = 0..2000</a> (first 171 terms from Fausto A. C. Cariboni) %e A337450 The a(5) = 2 through a(10) = 17 compositions (empty column indicated by dot): %e A337450 (2,3) . (2,5) (3,5) (2,7) (3,7) %e A337450 (3,2) (3,4) (5,3) (4,5) (7,3) %e A337450 (4,3) (2,3,3) (5,4) (2,3,5) %e A337450 (5,2) (3,2,3) (7,2) (2,5,3) %e A337450 (2,2,3) (3,3,2) (2,2,5) (3,2,5) %e A337450 (2,3,2) (2,3,4) (3,3,4) %e A337450 (3,2,2) (2,4,3) (3,4,3) %e A337450 (2,5,2) (3,5,2) %e A337450 (3,2,4) (4,3,3) %e A337450 (3,4,2) (5,2,3) %e A337450 (4,2,3) (5,3,2) %e A337450 (4,3,2) (2,2,3,3) %e A337450 (5,2,2) (2,3,2,3) %e A337450 (2,2,2,3) (2,3,3,2) %e A337450 (2,2,3,2) (3,2,2,3) %e A337450 (2,3,2,2) (3,2,3,2) %e A337450 (3,2,2,2) (3,3,2,2) %p A337450 b:= proc(n, g) option remember; `if`(n=0, %p A337450 `if`(g=1, 1, 0), add(b(n-j, igcd(g, j)), j=2..n)) %p A337450 end: %p A337450 a:= n-> b(n, 0): %p A337450 seq(a(n), n=0..42); %t A337450 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}] %Y A337450 A000740 is the version allowing 1's. %Y A337450 2*A055684(n) is the case of length 2. %Y A337450 A302697 ranks the unordered case. %Y A337450 A302698 is the unordered version. %Y A337450 A337451 is the strict version. %Y A337450 A337452 is the unordered strict version. %Y A337450 A000837 counts relatively prime partitions. %Y A337450 A002865 counts partitions with no 1's. %Y A337450 A101268 counts singleton or pairwise coprime compositions. %Y A337450 A212804 counts compositions with no 1's. %Y A337450 A291166 appears to rank relatively prime compositions. %Y A337450 A337462 counts pairwise coprime compositions. %Y A337450 Cf. A000010, A007359, A023023, A101268, A178472, A289509, A302568, A337485. %K A337450 nonn %O A337450 0,6 %A A337450 _Gus Wiseman_, Aug 31 2020