This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337451 #28 Feb 01 2021 17:50:33 %S A337451 0,0,0,0,0,2,0,4,2,10,8,20,14,34,52,72,90,146,172,244,390,502,680,956, %T A337451 1218,1686,2104,3436,4078,5786,7200,10108,12626,17346,20876,32836, %U A337451 38686,53674,67144,91528,113426,152810,189124,245884,343350,428494,552548,719156 %N A337451 Number of relatively prime strict compositions of n with no 1's. %C A337451 A strict composition of n is a finite sequence of distinct positive integers summing to n. %H A337451 Fausto A. C. Cariboni, <a href="/A337451/b337451.txt">Table of n, a(n) for n = 0..350</a> %e A337451 The a(5) = 2 through a(10) = 8 compositions (empty column indicated by dot): %e A337451 (2,3) . (2,5) (3,5) (2,7) (3,7) %e A337451 (3,2) (3,4) (5,3) (4,5) (7,3) %e A337451 (4,3) (5,4) (2,3,5) %e A337451 (5,2) (7,2) (2,5,3) %e A337451 (2,3,4) (3,2,5) %e A337451 (2,4,3) (3,5,2) %e A337451 (3,2,4) (5,2,3) %e A337451 (3,4,2) (5,3,2) %e A337451 (4,2,3) %e A337451 (4,3,2) %t A337451 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}] %Y A337451 A032022 does not require relative primality. %Y A337451 A302698 is the unordered non-strict version. %Y A337451 A332004 is the version allowing 1's. %Y A337451 A337450 is the non-strict version. %Y A337451 A337452 is the unordered version. %Y A337451 A000837 counts relatively prime partitions. %Y A337451 A032020 counts strict compositions. %Y A337451 A078374 counts strict relatively prime partitions. %Y A337451 A002865 counts partitions with no 1's. %Y A337451 A212804 counts compositions with no 1's. %Y A337451 A291166 appears to rank relatively prime compositions. %Y A337451 A337462 counts pairwise coprime compositions. %Y A337451 A337561 counts strict pairwise coprime compositions. %Y A337451 Cf. A000010, A007359, A101268, A178472, A216652, A289509, A337562, A337563. %K A337451 nonn %O A337451 0,6 %A A337451 _Gus Wiseman_, Aug 31 2020