This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337452 #25 Jan 31 2021 17:54:39 %S A337452 0,0,0,0,0,1,0,2,1,3,2,6,3,9,7,11,11,20,15,28,24,35,36,55,47,73,71,95, %T A337452 96,136,123,180,177,226,235,305,299,403,406,503,523,668,662,852,873, %U A337452 1052,1115,1370,1391,1720,1784,2125,2252,2701,2786,3348,3520,4116 %N A337452 Number of relatively prime strict integer partitions of n with no 1's. %H A337452 Fausto A. C. Cariboni, <a href="/A337452/b337452.txt">Table of n, a(n) for n = 0..300</a> %e A337452 The a(5) = 1 through a(16) = 11 partitions (A = 10, B = 11, C = 12, D = 13): %e A337452 32 43 53 54 73 65 75 76 95 87 97 %e A337452 52 72 532 74 543 85 B3 B4 B5 %e A337452 432 83 732 94 653 D2 D3 %e A337452 92 A3 743 654 754 %e A337452 542 B2 752 753 763 %e A337452 632 643 932 762 853 %e A337452 652 5432 843 943 %e A337452 742 852 952 %e A337452 832 942 B32 %e A337452 A32 6532 %e A337452 6432 7432 %t A337452 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}] %Y A337452 A078374 is the version allowing 1's. %Y A337452 A302698 is the non-strict version. %Y A337452 A332004 is the ordered version allowing 1's. %Y A337452 A337450 is the ordered non-strict version. %Y A337452 A337451 is the ordered version. %Y A337452 A337485 is the pairwise coprime version. %Y A337452 A000837 counts relatively prime partitions. %Y A337452 A078374 counts relatively prime strict partitions. %Y A337452 A002865 counts partitions with no 1's. %Y A337452 A212804 counts compositions with no 1's. %Y A337452 A291166 appears to rank relatively prime compositions. %Y A337452 A337561 counts pairwise coprime strict compositions. %Y A337452 Cf. A007359, A101268, A289509, A337485, A337563. %K A337452 nonn %O A337452 0,8 %A A337452 _Gus Wiseman_, Aug 31 2020