cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337452 Number of relatively prime strict integer partitions of n with no 1's.

This page as a plain text file.
%I A337452 #25 Jan 31 2021 17:54:39
%S A337452 0,0,0,0,0,1,0,2,1,3,2,6,3,9,7,11,11,20,15,28,24,35,36,55,47,73,71,95,
%T A337452 96,136,123,180,177,226,235,305,299,403,406,503,523,668,662,852,873,
%U A337452 1052,1115,1370,1391,1720,1784,2125,2252,2701,2786,3348,3520,4116
%N A337452 Number of relatively prime strict integer partitions of n with no 1's.
%H A337452 Fausto A. C. Cariboni, <a href="/A337452/b337452.txt">Table of n, a(n) for n = 0..300</a>
%e A337452 The a(5) = 1 through a(16) = 11 partitions (A = 10, B = 11, C = 12, D = 13):
%e A337452   32  43  53  54   73   65   75   76   95    87    97
%e A337452       52      72   532  74   543  85   B3    B4    B5
%e A337452               432       83   732  94   653   D2    D3
%e A337452                         92        A3   743   654   754
%e A337452                         542       B2   752   753   763
%e A337452                         632       643  932   762   853
%e A337452                                   652  5432  843   943
%e A337452                                   742        852   952
%e A337452                                   832        942   B32
%e A337452                                              A32   6532
%e A337452                                              6432  7432
%t A337452 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]
%Y A337452 A078374 is the version allowing 1's.
%Y A337452 A302698 is the non-strict version.
%Y A337452 A332004 is the ordered version allowing 1's.
%Y A337452 A337450 is the ordered non-strict version.
%Y A337452 A337451 is the ordered version.
%Y A337452 A337485 is the pairwise coprime version.
%Y A337452 A000837 counts relatively prime partitions.
%Y A337452 A078374 counts relatively prime strict partitions.
%Y A337452 A002865 counts partitions with no 1's.
%Y A337452 A212804 counts compositions with no 1's.
%Y A337452 A291166 appears to rank relatively prime compositions.
%Y A337452 A337561 counts pairwise coprime strict compositions.
%Y A337452 Cf. A007359, A101268, A289509, A337485, A337563.
%K A337452 nonn
%O A337452 0,8
%A A337452 _Gus Wiseman_, Aug 31 2020