A337459 Numbers k such that the k-th composition in standard order is a unimodal triple.
7, 11, 13, 14, 19, 21, 25, 26, 28, 35, 37, 41, 42, 49, 50, 52, 56, 67, 69, 73, 74, 81, 82, 84, 97, 98, 100, 104, 112, 131, 133, 137, 138, 145, 146, 161, 162, 164, 168, 193, 194, 196, 200, 208, 224, 259, 261, 265, 266, 273, 274, 289, 290, 292, 321, 322, 324
Offset: 1
Keywords
Examples
The sequence together with the corresponding triples begins: 7: (1,1,1) 52: (1,2,3) 133: (5,2,1) 11: (2,1,1) 56: (1,1,4) 137: (4,3,1) 13: (1,2,1) 67: (5,1,1) 138: (4,2,2) 14: (1,1,2) 69: (4,2,1) 145: (3,4,1) 19: (3,1,1) 73: (3,3,1) 146: (3,3,2) 21: (2,2,1) 74: (3,2,2) 161: (2,5,1) 25: (1,3,1) 81: (2,4,1) 162: (2,4,2) 26: (1,2,2) 82: (2,3,2) 164: (2,3,3) 28: (1,1,3) 84: (2,2,3) 168: (2,2,4) 35: (4,1,1) 97: (1,5,1) 193: (1,6,1) 37: (3,2,1) 98: (1,4,2) 194: (1,5,2) 41: (2,3,1) 100: (1,3,3) 196: (1,4,3) 42: (2,2,2) 104: (1,2,4) 200: (1,3,4) 49: (1,4,1) 112: (1,1,5) 208: (1,2,5) 50: (1,3,2) 131: (6,1,1) 224: (1,1,6)
Links
- Eric Weisstein's World of Mathematics, Unimodal Sequence
Crossrefs
A337460 is the non-unimodal version.
A000217(n - 2) counts 3-part compositions.
A001523 counts unimodal compositions.
A007052 counts unimodal patterns.
A011782 counts unimodal permutations.
A115981 counts non-unimodal compositions.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Combinatory separations are counted by A334030.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,1000],Length[stc[#]]==3&&!MatchQ[stc[#],{x_,y_,z_}/;x>y
Comments