A337460 Numbers k such that the k-th composition in standard order is a non-unimodal triple.
22, 38, 44, 70, 76, 88, 134, 140, 148, 152, 176, 262, 268, 276, 280, 296, 304, 352, 518, 524, 532, 536, 552, 560, 592, 608, 704, 1030, 1036, 1044, 1048, 1064, 1072, 1096, 1104, 1120, 1184, 1216, 1408, 2054, 2060, 2068, 2072, 2088, 2096, 2120, 2128, 2144, 2192
Offset: 1
Keywords
Examples
The sequence together with the corresponding triples begins: 22: (2,1,2) 296: (3,2,4) 1048: (6,1,4) 38: (3,1,2) 304: (3,1,5) 1064: (5,2,4) 44: (2,1,3) 352: (2,1,6) 1072: (5,1,5) 70: (4,1,2) 518: (7,1,2) 1096: (4,3,4) 76: (3,1,3) 524: (6,1,3) 1104: (4,2,5) 88: (2,1,4) 532: (5,2,3) 1120: (4,1,6) 134: (5,1,2) 536: (5,1,4) 1184: (3,2,6) 140: (4,1,3) 552: (4,2,4) 1216: (3,1,7) 148: (3,2,3) 560: (4,1,5) 1408: (2,1,8) 152: (3,1,4) 592: (3,2,5) 2054: (9,1,2) 176: (2,1,5) 608: (3,1,6) 2060: (8,1,3) 262: (6,1,2) 704: (2,1,7) 2068: (7,2,3) 268: (5,1,3) 1030: (8,1,2) 2072: (7,1,4) 276: (4,2,3) 1036: (7,1,3) 2088: (6,2,4) 280: (4,1,4) 1044: (6,2,3) 2096: (6,1,5)
Links
- Eric Weisstein's World of Mathematics, Unimodal Sequence
- Gus Wiseman, Statistics, classes, and transformations of standard compositions
Crossrefs
A000212 counts unimodal triples.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) counts 3-part partitions.
A001399(n - 6) counts 3-part strict partitions.
A001399(n - 6)*2 counts non-unimodal 3-part strict compositions.
A001399(n - 6)*4 counts unimodal 3-part strict compositions.
A001399(n - 6)*6 counts 3-part strict compositions.
A001523 counts unimodal compositions.
A001840 counts non-unimodal triples.
A059204 counts non-unimodal permutations.
A115981 counts non-unimodal compositions.
A328509 counts non-unimodal patterns.
A337459 ranks unimodal triples.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.
- Strict triples are A337453.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,1000],Length[stc[#]]==3&&MatchQ[stc[#],{x_,y_,z_}/;x>y
Comments