This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337461 #15 Jan 19 2021 14:38:22 %S A337461 0,0,0,1,3,3,9,3,15,9,21,9,39,9,45,21,45,21,87,21,93,39,87,39,153,39, %T A337461 135,63,153,57,255,51,207,93,225,93,321,81,291,135,321,105,471,105, %U A337461 393,183,381,147,597,147,531,213,507,183,759,207,621,273,621,231 %N A337461 Number of pairwise coprime ordered triples of positive integers summing to n. %H A337461 Fausto A. C. Cariboni, <a href="/A337461/b337461.txt">Table of n, a(n) for n = 0..10000</a> %e A337461 The a(3) = 1 through a(9) = 9 triples: %e A337461 (1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6) (1,1,7) %e A337461 (1,2,1) (1,3,1) (1,2,3) (1,5,1) (1,2,5) (1,3,5) %e A337461 (2,1,1) (3,1,1) (1,3,2) (5,1,1) (1,3,4) (1,5,3) %e A337461 (1,4,1) (1,4,3) (1,7,1) %e A337461 (2,1,3) (1,5,2) (3,1,5) %e A337461 (2,3,1) (1,6,1) (3,5,1) %e A337461 (3,1,2) (2,1,5) (5,1,3) %e A337461 (3,2,1) (2,5,1) (5,3,1) %e A337461 (4,1,1) (3,1,4) (7,1,1) %e A337461 (3,4,1) %e A337461 (4,1,3) %e A337461 (4,3,1) %e A337461 (5,1,2) %e A337461 (5,2,1) %e A337461 (6,1,1) %t A337461 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@#&]],{n,0,30}] %Y A337461 A000212 counts the unimodal instead of coprime version. %Y A337461 A220377*6 is the strict case. %Y A337461 A307719 is the unordered version. %Y A337461 A337462 counts these compositions of any length. %Y A337461 A337563 counts the case of partitions with no 1's. %Y A337461 A337603 only requires the *distinct* parts to be pairwise coprime. %Y A337461 A337604 is the intersecting instead of coprime version. %Y A337461 A014612 ranks 3-part partitions. %Y A337461 A302696 ranks pairwise coprime partitions. %Y A337461 A327516 counts pairwise coprime partitions. %Y A337461 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337461 Cf. A000217, A001399, A001840, A014311, A101268, A284825, A337562, A326675, A333227, A337601, A337602. %K A337461 nonn %O A337461 0,5 %A A337461 _Gus Wiseman_, Sep 02 2020