cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337461 Number of pairwise coprime ordered triples of positive integers summing to n.

This page as a plain text file.
%I A337461 #15 Jan 19 2021 14:38:22
%S A337461 0,0,0,1,3,3,9,3,15,9,21,9,39,9,45,21,45,21,87,21,93,39,87,39,153,39,
%T A337461 135,63,153,57,255,51,207,93,225,93,321,81,291,135,321,105,471,105,
%U A337461 393,183,381,147,597,147,531,213,507,183,759,207,621,273,621,231
%N A337461 Number of pairwise coprime ordered triples of positive integers summing to n.
%H A337461 Fausto A. C. Cariboni, <a href="/A337461/b337461.txt">Table of n, a(n) for n = 0..10000</a>
%e A337461 The a(3) = 1 through a(9) = 9 triples:
%e A337461   (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)  (1,1,7)
%e A337461            (1,2,1)  (1,3,1)  (1,2,3)  (1,5,1)  (1,2,5)  (1,3,5)
%e A337461            (2,1,1)  (3,1,1)  (1,3,2)  (5,1,1)  (1,3,4)  (1,5,3)
%e A337461                              (1,4,1)           (1,4,3)  (1,7,1)
%e A337461                              (2,1,3)           (1,5,2)  (3,1,5)
%e A337461                              (2,3,1)           (1,6,1)  (3,5,1)
%e A337461                              (3,1,2)           (2,1,5)  (5,1,3)
%e A337461                              (3,2,1)           (2,5,1)  (5,3,1)
%e A337461                              (4,1,1)           (3,1,4)  (7,1,1)
%e A337461                                                (3,4,1)
%e A337461                                                (4,1,3)
%e A337461                                                (4,3,1)
%e A337461                                                (5,1,2)
%e A337461                                                (5,2,1)
%e A337461                                                (6,1,1)
%t A337461 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@#&]],{n,0,30}]
%Y A337461 A000212 counts the unimodal instead of coprime version.
%Y A337461 A220377*6 is the strict case.
%Y A337461 A307719 is the unordered version.
%Y A337461 A337462 counts these compositions of any length.
%Y A337461 A337563 counts the case of partitions with no 1's.
%Y A337461 A337603 only requires the *distinct* parts to be pairwise coprime.
%Y A337461 A337604 is the intersecting instead of coprime version.
%Y A337461 A014612 ranks 3-part partitions.
%Y A337461 A302696 ranks pairwise coprime partitions.
%Y A337461 A327516 counts pairwise coprime partitions.
%Y A337461 A333228 ranks compositions whose distinct parts are pairwise coprime.
%Y A337461 Cf. A000217, A001399, A001840, A014311, A101268, A284825, A337562, A326675, A333227, A337601, A337602.
%K A337461 nonn
%O A337461 0,5
%A A337461 _Gus Wiseman_, Sep 02 2020