This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337462 #10 Feb 03 2021 23:10:29 %S A337462 1,1,1,3,6,12,21,37,62,100,159,253,402,634,983,1491,2224,3280,4813, %T A337462 7043,10270,14888,21415,30585,43400,61204,85747,119295,164834,226422, %U A337462 309663,422301,574826,781236,1060181,1436367,1942588,2622078,3531151,4742315,6348410 %N A337462 Number of pairwise coprime compositions of n, where a singleton is not considered coprime unless it is (1). %C A337462 A composition of n is a finite sequence of positive integers summing to n. %H A337462 Fausto A. C. Cariboni, <a href="/A337462/b337462.txt">Table of n, a(n) for n = 0..500</a> %F A337462 For n > 1, a(n) = A101268(n) - 1. %e A337462 The a(1) = 1 through a(5) = 12 compositions: %e A337462 (1) (1,1) (1,2) (1,3) (1,4) %e A337462 (2,1) (3,1) (2,3) %e A337462 (1,1,1) (1,1,2) (3,2) %e A337462 (1,2,1) (4,1) %e A337462 (2,1,1) (1,1,3) %e A337462 (1,1,1,1) (1,3,1) %e A337462 (3,1,1) %e A337462 (1,1,1,2) %e A337462 (1,1,2,1) %e A337462 (1,2,1,1) %e A337462 (2,1,1,1) %e A337462 (1,1,1,1,1) %t A337462 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||CoprimeQ@@#&]],{n,0,10}] %Y A337462 A000740 counts the relatively prime instead of pairwise coprime version. %Y A337462 A101268 considers all singletons to be coprime, with strict case A337562. %Y A337462 A327516 is the unordered version. %Y A337462 A333227 ranks these compositions, with complement A335239. %Y A337462 A337461 counts these compositions of length 3. %Y A337462 A337561 is the strict case. %Y A337462 A051424 counts pairwise coprime or singleton partitions. %Y A337462 A101268 counts pairwise coprime or singleton compositions. %Y A337462 A178472 counts compositions with a common factor. %Y A337462 A305713 counts strict pairwise coprime partitions. %Y A337462 A328673 counts pairwise non-coprime partitions. %Y A337462 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337462 A337667 counts pairwise non-coprime compositions. %Y A337462 Cf. A001523, A007360, A087087, A220377, A302569, A307719, A326675, A335235, A335238, A337664. %K A337462 nonn %O A337462 0,4 %A A337462 _Gus Wiseman_, Sep 18 2020