This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337469 #23 Oct 06 2020 02:36:56 %S A337469 120,420,1320,1560,4080,4560,5520,6960,1650,3432,3900,4488,7524,1890, %T A337469 17760,19680,20640,4290,22560,3150,25440,5610,28320,29280,12012,6270, %U A337469 4410,6630,7410,7590,23256,8970,28152,9570,9690,10230,6930,52440,22620,59160,24180,12210,8190,63240,64320 %N A337469 a(n) is the least k that is a multiple of A071395(n) (the n-th primitive abundant number) for which A003961(k) is abundant. %C A337469 A003961(k) replaces each prime factor of k with the next larger prime. Thus for all terms a(n), A003961(a(n)) is an odd abundant number (some of which are also primitive abundant numbers, starting with n = 1, 2, 9, 10, 12, ...). %F A337469 a(n) = A071395(n) * A337538(n). %e A337469 The table below shows a(n), for n less than 16, alongside A071395(n) and its prime factors, and the additional prime factors that are needed to produce a(n). %e A337469 n a(n) A071395(n) %e A337469 1 120 / (2 * 3) = 20 = 2^2 * 5, %e A337469 2 420 / (2 * 3) = 70 = 2 * 5 * 7, %e A337469 3 1320 / (3 * 5) = 88 = 2^3 * 11, %e A337469 4 1560 / (3 * 5) = 104 = 2^3 * 13, %e A337469 5 4080 / (3 * 5) = 272 = 2^4 * 17, %e A337469 6 4560 / (3 * 5) = 304 = 2^4 * 19, %e A337469 7 5520 / (3 * 5) = 368 = 2^4 * 23, %e A337469 8 6960 / (3 * 5) = 464 = 2^4 * 29, %e A337469 9 1650 / (3) = 550 = 2 * 5^2 * 11, %e A337469 10 3432 / (2 * 3) = 572 = 2^2 * 11 * 13, %e A337469 11 3900 / (2 * 3) = 650 = 2 * 5^2 * 13, %e A337469 12 4488 / (2 * 3) = 748 = 2^2 * 11 * 17, %e A337469 13 7524 / (3 * 3) = 836 = 2^2 * 11 * 19, %e A337469 14 1890 / (2) = 945 = 3^3 * 5 * 7, %e A337469 15 17760 / (3 * 5) = 1184 = 2^5 * 37, ... %t A337469 Map[Block[{k = 1}, While[DivisorSigma[1, #] <= 2 # &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[k #] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]], k++]; # k] &, Select[Range[5*10^3], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &]] (* _Michael De Vlieger_, Oct 05 2020 *) %o A337469 (PARI) %o A337469 isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395 %o A337469 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A337469 isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); }; %o A337469 for(n=1,2^13,if(isA071395(n), i=0; for(k=1,oo,if(isA337386(k*n),i++; print1(k*n,", "); break)))); %Y A337469 See A000203 and A005101 for the definition of abundant. %Y A337469 A003961 and A071395 are used to define the sequence. %Y A337469 Sequences with related definitions: A337386, A337479, A337538. %Y A337469 Cf. A003973. %K A337469 nonn %O A337469 1,1 %A A337469 _Antti Karttunen_ and _Peter Munn_, Sep 07 2020