cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337470 Square array read by falling antidiagonals, where A(n,k) = primorial inflation of k prime shifted n times with A003961.

This page as a plain text file.
%I A337470 #10 Aug 28 2020 11:07:10
%S A337470 1,2,1,6,3,1,4,15,5,1,30,9,35,7,1,12,105,25,77,11,1,210,45,385,49,143,
%T A337470 13,1,8,1155,175,1001,121,221,17,1,36,27,5005,539,2431,169,323,19,1,
%U A337470 60,225,125,17017,1573,4199,289,437,23,1,2310,315,1225,343,46189,2873,7429,361,667,29,1,24,15015,1925,5929,1331,96577,5491,12673,529,899,31
%N A337470 Square array read by falling antidiagonals, where A(n,k) = primorial inflation of k prime shifted n times with A003961.
%C A337470 Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...
%H A337470 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A337470 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A337470 A(n,k) = A242378(n,A108951(k)).
%e A337470 The top left corner of the array begins as:
%e A337470 n/k | 1   2    3    4     5     6      7     8      9     10
%e A337470 ----|------------------------------------------------------------
%e A337470   0 | 1,  2,   6,   4,   30,   12,   210,    8,    36,    60, ...
%e A337470   1 | 1,  3,  15,   9,  105,   45,  1155,   27,   225,   315, ...
%e A337470   2 | 1,  5,  35,  25,  385,  175,  5005,  125,  1225,  1925, ...
%e A337470   3 | 1,  7,  77,  49, 1001,  539, 17017,  343,  5929,  7007, ...
%e A337470   4 | 1, 11, 143, 121, 2431, 1573, 46189, 1331, 20449, 26741, ...
%e A337470   5 | 1, 13, 221, 169, 4199, 2873, 96577, 2197, 48841, 54587, ...
%e A337470 etc.
%o A337470 (PARI)
%o A337470 up_to = 105-1; \\ Or 78-1.
%o A337470 Ashifted_primorial(n,d) = prod(i=1, primepi(n), prime(i+d));
%o A337470 A337470sq(n, k) = { my(f=factor(k)); prod(i=1, #f~, Ashifted_primorial(f[i, 1], n)^f[i, 2]); };
%o A337470 A337470list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337470sq(b-1, (a-(b-1))))); (v); };
%o A337470 v337470 = A337470list(up_to);
%o A337470 A337470(n) = v337470[1+n];
%Y A337470 Cf. A108951 (row 0), A337471 (row 1).
%Y A337470 Cf. A003961, A242378.
%Y A337470 Cf. also A337205, A337472.
%K A337470 nonn,tabl
%O A337470 0,2
%A A337470 _Antti Karttunen_, Aug 28 2020